COMPUSENSE DRAGONPLUS
EXPANSION BOARD

+
EDIT+128 FULL SCREEN EDITOR

FOR THE 80 COLUMN x 24 ROW

VIDEO DISPLAY
+
OS9 & FLEX DRIVERS
Hardware and Software for the DRAGON32 and DRAGON64 Computers
Table of Contents

1THE COMPUSENSE DRAGONPLUS BOARD

2Part 1: The Compusense DragonPlus board 80 Column Video

3DragonPlus Video Memory Usage

5The 6845 CRTC Display Format

6The 6845 Registers

8Correcting the Compusense Vertical Timing register values

136845 Register Values Summary

15Part 2: The Compusense DragonPlus board Memory Expansion

15Dragon Memory Map

16Selecting Memory Banks

17The Compusense Edit+128 Screen Editor

18EDIT + 128 Extensions to Dragon BASIC

18The CLS command has been extended

18CONTROL Codes

19ESCAPE Code Sequences

19Autorepeat

19Additional Characters

20Extending PEEK and POKE to the DragonPlus memory banks

21USING DRAGONPLUS WITH OS9 AND FLEX

21OS9 Drivers for DragonPlus

21GO80 – The 80 Column Display module

21VDISK – The Virtual Disk

22Getting Started With DragonPlus on OS9

23Configuring An OS9 System Disk To Start With GO80 and VDISK

23A Patch for OS9 STYLO to use the 80 column display

24FLEX Update for DragonPlus

24Installing the new version of FLEX

24DBASIC for FLEX

24ASN and Drive Mapping

25Initialising the Virtual Disk (RAM disk)

25Using the RAM disk

26APPENDIX A: The DragonPlus Character Set

32Some thoughts about modifications to the DragonPlus Video configuration

THE COMPUSENSE DRAGONPLUS BOARD
On its launch in 1982 the Dragon32/64 was a powerful and versatile 8 bit home computer at a budget price. But it was badly let down by its video display due to the limitations of the Motorola 6847 Color Video Display Generator that it shared with the TRS-80 CoCo.
The Dragon’s standard 6847 VDG chip provided a number of text or dot-addressable graphic modes:

1. 256 x 192 high resolution graphics in black/white or black/green,

2. 128 x 96 medium resolution graphics in a choice of 2 poorly chosen 4 color pallets

3. 64 x 32 block graphics in 8 colors + black

4. 32 column x 16 row text in upper case only, with inverse text instead of lower case.

… but the graphics video display was poor, even by the standards of the day.

For serious text based applications the 32 by 16 uppercase text was the Dragon’s most unsatisfactory feature. In order to overcome this limitation a British company called Compusense
 developed an add-on board called the DragonPlus which used the more versatile Motorola 6845 CRT controller chip to provide an alternative 80 column by 24 row text display which had both upper and lowercase text and a selection of 128 additional symbols. (Incidentally, the 6845 chip was also used for the IBM Graphics Adapters, the BBC Model A/B and a number of other popular computers of the early 1980s).
As well as providing an 80 x 24 text display the DragonPlus expansion board included an additional 64 kilobytes of dynamic RAM which could be used for programs or data.
There were two alternative DragonPlus boards one for the Dragon32 and the other for the Dragon 64, the only difference between the boards being the position of the stand-off plug that connects to the main system board. The features are identical so these notes apply to either configuration.

In many ways it is easy to consider the 80 column display and the memory expansion as two separate and unrelated features – so I will document them in that way. There will also be a brief description of how the Compusense Edit + 128 program editor uses the DragonPlus board, and notes about how to use the features of the DragonPlus board with the OS9 and FLEX operating systems.
Part 1: The Compusense DragonPlus board 80 Column Video

The implementation of the video circuitry on the DragonPlus board is similar to that of the IBM Monochrome Display Adapter. Both provide an 80 column by 24 row display using a separate 2kilobyte “video” memory on the board itself. Neither board has pixel addressable graphics modes, and both provide only a single text mode where all the 256 characters available are read from a character EPROM. The IBM board did however have an additional 2kilobyte “attribute” memory that was addressed in parallel with the video ram to provide text attributes such as reverse video, bright, underline and blinking characters This feature has not been designed into the DragonPlus board.

The block diagram of the DragonPlus video circuitry is something like this:

[image: image1]
DragonPlus Video Memory Usage

The 6845 takes data from both the dedicated DragonPlus Video RAM and a Character EPROM in order to produce the text output

Video RAM

The Video RAM – in this case a 2kilobyte Static RAM - is used to store a character code for each character position on the screen 80 columns wide and 24 rows high (1920 characters in total). This RAM is on the DragonPlus board itself and is quite separate from the Dragon’s normal 32k or 64k RAM. This means that it is not possible to simultaneously mix the DragonPlus 80 column display with the Dragon’s original text and video graphics on the same screen.

Because this Video RAM must be accessed both by the 6845 and the Dragon’s CPU there is additional address multiplexing logic on the DragonPlus board. The DragonPlus Video RAM is addressed in the bottom 2k of the Dragon’s 64k address space, in parallel with the normal RAM.

The HD 6845 is the Hitachi version of the original Motorola design. It has 14 internal 8 bit Write Only registers that are used to control all of the video timing, and 2 pairs of Read/Write registers that can be used to read the cursor position and lightpen position.

Character ROM

The Character Generator EPROM holds the dot patterns for 256 character codes. These include the 127 standard ASCII characters (codes 32 to 127), and in addition, codes 1 to 31 that have been used to define some Greek letters and accented letters. The codes from 129 to 256 are a repeat of the first 128 characters but underlined.
The 2764 EPROM (8k by 8 bits) actually has space for two 256 character sets but only the first 4k has been programmed. Interestingly there are a number of jumper pads next to the character EPROM that might have been intended to allow switching between character sets.
The DragonPlus character EPROM allows 16 bytes to define the dot pattern for each character code but only 11 bytes are actually used. The character dot patterns are drawn to fit an 8 column by 11 row matrix. Each individual scan line of the character pattern is one byte (8 bits). A 0 bit represents an “off bit” (blank background) and a 1 bit an “on bit” displayed as a white dot on the VDU.

The leading and trailing bits of each byte (bit 7 and bit 0) are zero to give a vertical gap between characters. The first byte and the last few bytes of each character are zeros – to leave a blank scan line for interline spacing.
Here are some examples
	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code
	
	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code

	Byte 0
	
	
	
	
	
	
	
	
	00
	
	Byte 0
	
	
	
	
	
	
	
	
	00

	Byte 1
	
	
	
	
	
	
	
	
	18
	
	Byte 1
	
	
	
	
	
	
	
	
	00

	Byte 2
	
	
	
	
	
	
	
	
	24
	
	Byte 2
	
	
	
	
	
	
	
	
	00

	Byte 3
	
	
	
	
	
	
	
	
	42
	
	Byte 3
	
	
	
	
	
	
	
	
	00

	Byte 4
	
	
	
	
	
	
	
	
	42
	
	Byte 4
	
	
	
	
	
	
	
	
	1A

	Byte 5
	
	
	
	
	
	
	
	
	7E
	
	Byte 5
	
	
	
	
	
	
	
	
	26

	Byte 6
	
	
	
	
	
	
	
	
	42
	
	Byte 6
	
	
	
	
	
	
	
	
	22

	Byte 7
	
	
	
	
	
	
	
	
	42
	
	Byte 7
	
	
	
	
	
	
	
	
	26

	Byte 8
	
	
	
	
	
	
	
	
	42
	
	Byte 8
	
	
	
	
	
	
	
	
	1A

	Byte 9
	
	
	
	
	
	
	
	
	00
	
	Byte 9
	
	
	
	
	
	
	
	
	02

	Byte 10
	
	
	
	
	
	
	
	
	00
	
	Byte 10
	
	
	
	
	
	
	
	
	1C

	Byte 11
	
	
	
	
	
	
	
	
	00
	
	Byte 11
	
	
	
	
	
	
	
	
	00

	Byte 12
	
	
	
	
	
	
	
	
	00
	
	Byte 12
	
	
	
	
	
	
	
	
	00

	Byte 13
	
	
	
	
	
	
	
	
	00
	
	Byte 13
	
	
	
	
	
	
	
	
	00

	Byte 14
	
	
	
	
	
	
	
	
	00
	
	Byte 14
	
	
	
	
	
	
	
	
	00

	Byte 15
	
	
	
	
	
	
	
	
	00
	
	Byte 15
	
	
	
	
	
	
	
	
	00

Upper case “A” Character 65

 Lower case “g” Character 103
	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code
	
	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code

	Byte 0
	
	
	
	
	
	
	
	
	00
	
	Byte 0
	
	
	
	
	
	
	
	
	00

	Byte 1
	
	
	
	
	
	
	
	
	00
	
	Byte 1
	
	
	
	
	
	
	
	
	00

	Byte 2
	
	
	
	
	
	
	
	
	00
	
	Byte 2
	
	
	
	
	
	
	
	
	00

	Byte 3
	
	
	
	
	
	
	
	
	00
	
	Byte 3
	
	
	
	
	
	
	
	
	00

	Byte 4
	
	
	
	
	
	
	
	
	38
	
	Byte 4
	
	
	
	
	
	
	
	
	2C

	Byte 5
	
	
	
	
	
	
	
	
	04
	
	Byte 5
	
	
	
	
	
	
	
	
	32

	Byte 6
	
	
	
	
	
	
	
	
	3C
	
	Byte 6
	
	
	
	
	
	
	
	
	22

	Byte 7
	
	
	
	
	
	
	
	
	44
	
	Byte 7
	
	
	
	
	
	
	
	
	32

	Byte 8
	
	
	
	
	
	
	
	
	3E
	
	Byte 8
	
	
	
	
	
	
	
	
	2C

	Byte 9
	
	
	
	
	
	
	
	
	7E
	
	Byte 9
	
	
	
	
	
	
	
	
	20

	Byte 10
	
	
	
	
	
	
	
	
	00
	
	Byte 10
	
	
	
	
	
	
	
	
	20

	Byte 11
	
	
	
	
	
	
	
	
	00
	
	Byte 11
	
	
	
	
	
	
	
	
	20

	Byte 12
	
	
	
	
	
	
	
	
	00
	
	Byte 12
	
	
	
	
	
	
	
	
	00

	Byte 13
	
	
	
	
	
	
	
	
	00
	
	Byte 13
	
	
	
	
	
	
	
	
	00

	Byte 14
	
	
	
	
	
	
	
	
	00
	
	Byte 14
	
	
	
	
	
	
	
	
	00

	Byte 15
	
	
	
	
	
	
	
	
	00
	
	Byte 15
	
	
	
	
	
	
	
	
	00

Lower case “a” Character 97

Underlined lower case “p” Character 251
See Appendix A for details of the complete DragonPlus Character Set.
The 6845 CRTC Display Format
The 6845 CRTC (Cathode Ray Tube Controller) forms the heart of the DragonPlus 80 column display circuitry. It is responsible for producing the correct video format, positioning the cursor, performing interlace, and it could even be used to monitor and decode a lightpen.

Example CRT screen - to illustrate the values used by the 6845 registers
	
	← Total number of horizontal characters (-1) Reg 0 →

	
	← Total horizontal displayed characters Reg 1 →
	← HSync pos R2

	312 scan lines per screen
	← Total character rows (-1) Reg 4 →
	← Total number of character rows displayed Reg 6 →
	
	
	
	
	
	
	
	
	Scan lines per char (-1)
Reg 9

	
	
	
	 █
	██
	
	
	
	
	
	
	

	
	
	
	▐ ▌

	▌ ▌
	
	
	
	
	
	
	

	
	
	
	▐ ▌
	▌ ▌
	
	
	
	
	
	
	

	
	
	
	▐█▌
	██
	 █ ▌
	
	
	
	
	
	

	
	
	
	▐ ▌
	▌ ▌
	▌ ▌
	
	
	
	
	
	

	
	
	
	▐ ▌
	▌ ▌
	▌ ▌
	
	
	
	
	
	

	
	
	
	▐ ▌
	▌ ▌
	▌ ▌
	
	
	
	
	
	

	
	
	
	▐ ▌
	██
	 █
	
	
	
	
	
	

	
	
	
	
	
	 ▌
	
	
	
	
	
	

	
	
	
	
	
	 ▌
	
	
	
	
	
	

	
	
	
	
	
	 █
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Horizontal retrace period

(VSync pos R7

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Vertical retrace period
	

	
	
	
	
	Total adjust R5

	
	
	
	
	

	
	
	
	
	

	← 64 micro seconds (PAL) →

The 6845 Registers

The 6845 has 18 internal registers, 14 of which are write only (R0 to R13), 2 of which are read and write (R14 and R15) and 2 of which are read only (R16 and R17).

In order to access any of these registers:

1. The 6845 Register address must be written into the 6845 Control register at &hFFE0.

…and then

2. The data can be written to (or read from) the 6845 Data register at &hFFE1.

Note: Read the Video status from BIT 0 at address &hFFE2.
1 = display busy,
0 = display available (register changes available) during horizontal and vertical retrace periods.

On the DragonPlus board these registers are programmed by the ED128.BIN program when the editor Edit +128 is run, or by special OS-9 and FLEX operating system drivers.

	Reg
	Purpose
	Units
	Size

	R0
	Horizontal total characters columns (-1)
	Chars
	8 bits

	R1
	Horizontal total character columns displayed
	Chars
	8 bits

	R2
	Horizontal synch position
	Chars
	8 bits

	R3
	Horizontal and vertical synch pulse width
	Bit field
	8 bits

	
	
	
	

	R4
	Vertical total character lines (-1)
	Rows
	7 bits

	R5
	Vertical total raster scan lines adjust
	Scan lines
	5 bits

	R6
	Vertical displayed character rows
	Rows
	7 bits

	R7
	Vertical synch position
	Rows
	7 bits

	
	
	
	

	R8
	Display blanking and cursor blanking delays + Interlace mode
	Bit field
	6 bits

	R9
	Number of raster scan lines per character line (-1)
	Scan lines
	8 bits

	R10
	Cursor start raster scan line + cursor mode control
	Bit field
	5 + 2 bits

	R11
	Cursor end raster scan line
	Scan lines
	5 bits

	
	
	
	

	R12
	Display start address high byte
	VRAM -
	8 bits

	R13
	Display start address low byte
	Address
	8 bits

	
	
	
	

	R14
	Cursor current position high byte (6 bits only) Read/Write
	VRAM -
	6 bits

	R15
	Cursor current position low byte Read/Write
	Address
	8 bits

	
	
	
	

	R16
	Light pen current position high byte (6 bits only) Read only
	VRAM -
	6 bits

	R17
	Light pen current position low byte Read only
	Address
	8 bits

Here is some detail about each register and the values that have been chosen by Compusense for the DragonPlus card.

The 6845 was also used in the IBM Color Graphics Card and the BBC computer to display 80 columns by 25 rows of text, whereas the DragonPlus is 80 by 24, but I have included the values used by those machines for comparison. (The IBM CGA chose an 8 x 8 character cell for its font using 5 pixels by 7 rows with 1 row for a descender).
1. Horizontal Timing Registers (Character Columns)

Most of these register values are in character cell units (the space taken by one character).

R0: Horizontal Total Register (-1)
This 8 bit write only register specifies the horizontal synch frequency. The value that is inserted is the number of horizontal clock cycles per line, minus 1

That is total of:

(number of char cells displayed per row + the number of non-displayed chars) -1
The DragonPlus uses 113 (&h71). IBM CGA uses 113. BBC Computer uses 127.
R1: Horizontal Total Characters Displayed Register

This 8 bit write only register specifies the number of displayed characters per line.
The DragonPlus uses 80 (&h50). IBM CGA uses 80. BBC Computer uses 80.

R2: Horizontal Synch. Position

This 8 bit write only register specifies the horizontal synch pulse position on the horizontal scan line. This is given in character cell widths from the left hand end of the line.
The DragonPlus uses 93 (&h5D). IBM CGA uses 90. BBC Computer uses 98.

R3: Horizontal and Vertical Synch Width

This 8 bit write only register defines both the horizontal and vertical pulse timings. This allows the CRT to lock onto the synch pulses.

The lower 4 bits hold the Horizontal synch pulse width (in character cells units). This can be a value from 1 to 15.

The DragonPlus uses 8 (&h*8), IBM CGA uses 10. (&h*A), BBC Computer uses 8 (&h*8).
The upper 4 bits hold the number of scan lines for the Vertical synch pulse.

The DragonPlus uses 2 (&h2*), the.IBM CGA uses 0, the BBC Computer uses 2 (&h2*).
2. Vertical Timing Registers (Character Rows).

The vertical synch frequency is determined by R9, R4 and R5 together in order to match the PAL 50Hz (or NTSC 60Hz) display frequency. The PAL standard has 625 scan lines split into two interlaced fields of 312 lines each. The number of scanlines per character multiplied by the number of character rows does not always exactly match the required number of scanlines per screen. R9 has the number of scanlines per character minus 1. R4 has the whole number of character lines minus 1, so R5 holds the number of extra scan lines to add to adjust to the required total number of scanlines per screen field.
 (R4+1) x (R9+1) + R5 = Total scan lines displayed

Here Compusense appear to have made a mistake in the values that they chose for DragonPlus as their R4, R5 and R9 values produce a total of 316 rather than 312.
R4: Vertical Total Character Register (-1)
This 7 bit write only register is programmed with the number of character lines minus 1.

Compusense use 25 (&h19). IBM CGA uses 31. BBC Computer uses 30.

R5: Vertical Adjust Register

This is a 5 bit register that is programmed with the fraction of the timing to be added to R4. It will be programmed with a number of scan lines (not character lines). It can be varied slightly to move the display position up or down by a few scanlines.

Compusense use 30 (&h1E). IBM CGA uses 6. BBC Computer uses 2.

R6: Vertical Displayed Characters Register
This 7 bit write only register holds the number of displayed character rows
The DragonPlus uses 24 (&h18). IBM CGA uses 25. BBC Computer uses 25.

R7: Vertical Synch Position
This 7 bit write only register determines the vertical synch position (the trigger for the vertical retrace). It is programmed in character rows.

The DragonPlus uses 25 (&h19). IBM CGA uses 26. BBC Computer uses 27.

Correcting the Compusense Vertical Timing register values

Change R4 to 27 (&h1B), Change R5 to 4 (&h04) :
 (R4+1) x (R9+1) + R5 = 28 x 11 +4 = 312
3. Interlace and Display Blanking

R8: Interlace and Display blanking Register

This single register uses pairs of bits to control the raster interlace mode, display blanking and cursor blanking periods. The assignment of the active bits differs slightly for the Motorola 6845 and the Hitachi equivalent. The DragonPlus uses the Hitachi part.
The DragonPlus uses &hA2. The IBM CGA uses &h02. The BBC Computer uses 01.

Interlace Mode (Bits 0 and 1 only)
Bit 1
Bit 0
Description

 0
 0
Non interlaced synch

 0
 1
Interlaced synch

 1
 0
Non interlace synch

 1
 1
Interlace synch and video

The DragonPlus uses 2 (10 binary) – non interlaced. The IBM CGA uses 2 –non interlaced. BBC Computer uses 01 - interlaced.

Bits 2 and 3 of this register are not used

Display Blanking Delay (Bits 4 and 5 only)
This provides a blanking period to allow for the time taken to transfer data from the memory to the video output circuitry.

Bit 5
Bit 4
Description

 0
 0
No delay

 0
 1
1 character delay

 1
 0
2 characters delay

 1
 1
Disable video output

The DragonPlus, the IBM CGA and BBC Computer all use 00 – no delay.

Cursor Blanking Delay (bits 6 and 7 only)
This controls the cursor blanking signal. It is used to delay the moment at which the cursor should appear on the screen (perhaps to allow for Dynamic RAM refresh).

Bit 7
Bit 6
Description

 0
 0
No delay

 0
 1
1 character delay

 1
 0
2 characters delay

 1
 1
Disable cursor output

The DragonPlus uses 11binary – disable (no output). The IBM CGA and the BBC Computer use 00 – no delay.

R9: Number of raster lines per character (-1)
This 5 bit write only register sets the number of scan lines per character cell including spacing rows. The counter is zero based so the value set is always 1 less than the output scan lines.

The DragonPlus uses 10 (&h0A). The IBM CGA uses 7. The BBC computer uses 9.

For the Dragon this means is that only the first 11 of the 16 rows of each character code defined in the character EPROM will actually be drawn.
4. The Cursor
The Cursor can be programmed to be displayed at any character position on the screen (defined by R14 and R15). In addition, the blink rate can be set to a multiple of the field period and the cursor can be set to be non-blinking or be disabled altogether. Its vertical position within a character cell and its height (in scan lines) can also be specified.

R10: Cursor Start Register

This 7 bit write only register controls the appearance of the cursor.

Bit 7 is not used.
Bit 6 enables cursor blinking (1=blinking on). DragonPlus = 1

Bit 5 controls the blink frequency 0 = 1/16th of field frequency, 1 = 1/32nd of field frequency. DragonPlus = 1
Bits 0 to 4 specify the start line within the character cell. Register R11 (bits 0 to 4) specifies the end line within the character cell. DragonPlus = 0

DragonPlus uses 96 (&h60). IBM CGA uses (&h06). BBC computer uses (&h67).

R11: Cursor End Register

This 5 bit write only register specifies the scan line within the character cell on which the cursor ends. Only the lower 5 bits are used. The lower 5 bits of R10 and of this register set the upper and lower limits of the cursor.

DragonPlus uses 10 (&h0A). IBM CGA uses (&h07). BBC computer uses (&h09)

Examples of cursors BBC

DragonPlus
	Line 0
	
	
	
	
	
	
	
	
	
	Line 0
	
	
	
	
	
	
	
	

	Line 1
	
	
	
	
	
	
	
	
	
	Line 1
	
	
	
	
	
	
	
	

	Line 2
	
	
	
	
	
	
	
	
	
	Line 2
	
	
	
	
	
	
	
	

	Line 3
	
	
	
	
	
	
	
	
	
	Line 3
	
	
	
	
	
	
	
	

	Line 4
	
	
	
	
	
	
	
	
	
	Line 4
	
	
	
	
	
	
	
	

	Line 5
	
	
	
	
	
	
	
	
	
	Line 5
	
	
	
	
	
	
	
	

	Line 6
	
	
	
	
	
	
	
	
	
	Line 6
	
	
	
	
	
	
	
	

	Line 7
	
	
	
	
	
	
	
	
	
	Line 7
	
	
	
	
	
	
	
	

	Line 8
	
	
	
	
	
	
	
	
	
	Line 8
	
	
	
	
	
	
	
	

	Line 9
	
	
	
	
	
	
	
	
	
	Line 9
	
	
	
	
	
	
	
	

	Line 10
	
	
	
	
	
	
	
	
	
	Line 10
	
	
	
	
	
	
	
	

	Line 11
	
	
	
	
	
	
	
	
	
	Line 11
	
	
	
	
	
	
	
	

	Line 12
	
	
	
	
	
	
	
	
	
	Line 12
	
	
	
	
	
	
	
	

	Line 13
	
	
	
	
	
	
	
	
	
	Line 13
	
	
	
	
	
	
	
	

	Line 14
	
	
	
	
	
	
	
	
	
	Line 14
	
	
	
	
	
	
	
	

	Line 15
	
	
	
	
	
	
	
	
	
	Line 14
	
	
	
	
	
	
	
	

 Start row = 9. End row = 9

 Start row = 0. End row = 10
5. Display Memory Mapping

The DragonPlus Video RAM is a block of 2048 bytes of which 1920 are mapped onto the screen by the 6845 as 80 columns by 24 rows of one byte character cells. The display addressing starts at address &h0000 which is the top left hand corner and progresses across the columns, row by row to the bottom right at offset &h07FF.

Display Memory Start Address

The 6845 CRTC uses two registers R12 and R13 to set the address in Video RAM that is used for the start of the screen display.

R12: Display start address High byte

This 6 bit write only register sets the high order bits of a 14 bit address

R13: Display start address Low byte
The lower 6 bits of R12 and all 8 bits of R13 form a 14 bit address (possible values from &H0000 to &H3FFF) are used to specify an offset into the RAM for the start of the displayed characters.

The DragonPlus uses 0 (&h00) in both register R12 and R13 because its Video RAM starts at address &h0000.

Cursor Position On Screen
The 6845’s registers 14 and 15 are a pair of Read/Write registers that are used to set or read the position of the cursor within the Video RAM.

R14: Cursor Position High byte

This 6 bit Read and Write register is the upper 6 bits of the current cursor address.
R15: Cursor Position Low byte

The lower six bits of R14 and all 8 bits of R15 form a 14 bit address (values from &H0000 to &H3FFF) that is the current position of the cursor within the Video RAM.

The DragonPlus initializes these two registers to &H0000 which is the address of the top left character position on the display screen.

6. Support for Light Pens

The 6845 has provision for reading the position on the screen of a light pen. A light pen is a light sensitive device that can be pointed at the screen. A photo transistor senses the light given out from the screen and because a CRT screen is drawn as a raster (from top left to bottom right) the position of the light pen sensor in relation to the raster scan can be detected if a CRT TV or monitor is used.. The resolution of these light pen devices is limited by their sensitivity because a relatively large patch of screen is needed to provide sufficient light to register with the pen – in this case a character cell. The position of a light pen can be read from registers R16 and R17.

R16: Light Pen Position High byte

This 6 bit Read only register is the upper 6 bits of the light pen address.

R17: Light Pen Position Low byte

The lower six bits of R16 and all 8 bits of R17 form a 14 bit address (values from &H0000 to &H3FFF) that is the current position of the light pen relative to the corresponding screen character in the Video RAM.

The use of a light pen requires additional hardware which has not been added to the DragonPlus board.

7. Hardware Screen Scrolling
14 bits of registers R12 and R13 specify an offset for the start of the display screen within up to 16k of video RAM. The DragonPlus board only has 2k of dedicated video RAM and the start address is set &H0000.

But the value in these two registers can be used to offset the start of the screen to anywhere in the Video RAM provided it is within the RAM address range (in this case &H0000 to &H07FF). This could be used to provide screen scrolling. To move the display up by one line the address would be increased by the number of characters per line (80 on the DragonPlus), and decremented by the same amount to move the display down one line. Incrementing by the number of characters per line (80) will move the displayed text upwards one line, and decrementing by the same number will move the text down a line, remembering to check that the values stay within the &H000 to &H07FF Video RAM address range.
Sideways scrolling should also be possible, but in this case the text will wrap around either one line above or below depending on the direction of scrolling. To avoid changes happening in the middle of a screen, the code to perform scrolling should wait until the vertical frame retrace period before changing the registers
8. Accessing the Video Memory
The status of the DragonPlus video display can be checked at Bit 0 of the &hFFE2 register.

If Bit 0 = 0 then the display is in a blanking interval

If Bit 0 = 1 then the display is busy i.e. not blanking.

To avoid flickering, check the status of the video display and make all changes during the blanking period.
The horizontal retrace period is only 2 or 3 short 6809 instructions and the vertical retrace period is about ?? nn short instructions.
6845 Register Values Summary
	Reg
	Purpose
	Edit128Value

	R0
	Horizontal total character clock cycles (-1)
	&h71 (113)

	R1
	Horizontal total character columns displayed
	&h50 (80)

	R2
	Horizontal synch position
	&h5D (93)

	R3
	Horizontal and vertical synch width
	&h37 (55)

	
	
	

	R4
	Vertical total character lines (-1)
	&h19 (25)

	R5
	Vertical total adjust raster lines
	&h1E (30)

	R6
	Vertical displayed character lines
	&h18 (24)

	R7
	Vertical synch position
	&h19 (25)

	
	
	

	R8
	Display blanking and cursor blanking delays + Interlace mode
	&hA2 162)

	R9
	Number of raster lines per character line (-1)
	&h0A (10)

	R10
	Cursor start raster line + cursor mode control
	&h60 (96)

	R11
	Cursor end raster line
	&h0A (10)

	
	
	

	R12
	Display start address high byte
	&h00 0

	R13
	Display start address low byte
	&h00 0

	
	
	

	R14
	Cursor current position high byte (6 bits only) Read/Write
	&h00 0

	R15
	Cursor current position low byte Read/Write
	&h00 0

	
	
	

	R16
	Light pen current position high byte (6 bits only) Read only
	&h00 0

	R17
	Light pen current position low byte Read only
	&h00 0

Preferred value for R4 would be 27 (&h1B) and for R5 would be 4

Setting the 6846 Register Values
Here is the Motorola 6809 Assembler code in EDIT128.BIN that is used to setup the DragonPlus 6845 registers.

* PROGRAM TO SET 6845 REGISTERS

*

*

START
PSHS

A,B,X

PRESERVE CPU REGISTERS

LDX

#TABLE,PCR

ADDRESS OF TABLE
CLRB

START AT REGISTER 0
LOOP

STB

$FFE0

6845 CONTROL REGISTER

LDA

,X+

GET VALUE FROM TABLE

STA

$FFE1

PUT IN 6845 DATA REGISTER

INCB

NEXT REGISTER

CMPB

#$10

UNTIL ALL 16 ARE SET

BNE

LOOP

REPEAT IF NOT FINISHED

PULS

X,B,A

RESTORE CPU REGISTERS

RTS

TABLE
FCB

#$71

REG0

FCB

#$50

REG1

FCB

#$5D

REG2

FCB

#$28

REG3

FCB

#$19

REG4

FCB

#$1E

REG5

FCB

#$18

REG6

FCB

#$19

REG7

FCB

#$A2

REG8

FCB

#$0A

REG9

FCB

#$60

REG10

FCB

#$0A

REG11

FCB

#$00

REG12

FCB

#$00

REG13

FCB

#$00

REG14

FCB

#$00

REG15

END

These are the values set by the Compusense EDIT128.BIN Editor program. The TABLE can be found at $h3C69 before the program is run and relocates itself to upper memory, when the program is executed. The relocated table can be found at address &hE369.
Part 2: The Compusense DragonPlus board Memory Expansion

The DragonPlus board adds 64kilobytes of dynamic RAM to the existing Dragon memory. However the Dragon is an 8 bit computer that can only address 64 kilobytes of memory at any one time, so the additional memory on the DragonPlus board has been configured as two banks of 32kilobytes that are mapped into the bottom 32k of the Dragon memory map along side the existing memory.

Dragon Memory Map
	Address
	Map 0 mode
	Map 1 mode
	DragonPlus memory

	FFFF

FFF2
	CPU Vectors
	

	FFF1

FFE3
	Unused

	

	FFE2

FFE1

FFE0
	DragonPlus memory bank select

6845 Data register

6845 Control register
	

	FFDF

FFC0
	SAM control registers
	

	FFBF

FF60
	Unused

	

	FF23

FF00
	PIA 2 Input/Output devices
PIA 1
	

	FEFF

E000
	
	EDIT Plus 128 program
	

	DFFF

C000
	Dragon DOS in ROM

	Dragon DOS in RAM
	

	BFFF

8000
	Basic Interpreter in ROM
	Basic Interpreter in RAM
	

	7FFF

7500
	EDIT plus

Work space
	7FFF
Bank A

32k Ram
	7FFF

Bank

B

32k

RAM
	

	7500

	String Space

Stack grows downwards
	
	
	

	74FF

3600
	Program memory
	
	
	

	35FF

0600
	Graphics pages 1 to 8
	
	
	

	05FF

0400
	Normal Text screen
	
	
	07FF

Bank

C
2k

Video

RAM

	03FF

0100
	System buffers, vectors, system variables
	
	
	

	00FF

0000
	Direct page, system variables
	
	
	

As well as the two banks of additional dynamic RAM – Bank A and Bank B there is also the 2kilobyte bank of Static RAM - Bank C. The memory in Bank C will be normally be used by the 80 column video display as described in Part 1 of these notes, but if the 80 column feature is not being used then this memory is also available to the programmer.

A “Bank Switching” technique must be used to switch between the different memory banks and the Bank Switching program must be in the top 32K of the Dragon memory in order to perform switching.

Selecting Memory Banks

The DragonPlus register at &hFFE2 is used to select between the memory banks.

Only the lower 3 bits are used.

	7
	6
	5
	4
	3
	2
	1
	0
	
	 Description

	
	
	
	
	
	0
	0
	0
	
	Normal Dragon RAM (lower 32k)

	
	
	
	
	
	0
	0
	1
	
	Video RAM - Bank C (2k)

	
	
	
	
	
	0
	1
	0
	
	DragonPlus - Bank A (32k)

	
	
	
	
	
	1
	0
	0
	
	 Undefined

	
	
	
	
	
	1
	1
	0
	
	DragonPlus - Bank B (32k)

	
	
	
	
	
	1
	1
	1
	
	 undefined (Bank B + Bank C ?)

In general when switching between memory banks it will be important to preserve the stack pointer and at least the Direct Page. The Direct Page is usually set to address &h00 at the bottom of the memory map by default, but it can be set to any 256 page boundary.

As well as being used for programs, the additional memory banks could be used as a RAM Disk. This is the way that the DragonPlus card memory is configured when running the OS-9 or FLEX operating systems.
The Compusense Edit+128 Screen Editor
At the same time that Compusense produced the DragonPlus card they also provided an Editor program to use the extra memory and the 80 column display. This was the Edit+128 Editor and Programmers Toolkit.

Edit+128 should not be confused with the Compusense Edit+ Full Screen Editor and Programmers Toolkit which used the Dragon’s graphics pages to draw text characters in a 51 column by 24 row display, although many of the screen control codes and editor commands are the same.
The Edit+128 Editor uses a short Basic program “EDIT128.BAS” to protect a portion of memory above &h7500 and then loads a machine code program ED128.BIN at memory locations &h3700 to &h54B6.
When ED128.BIN is executed it does the following:

1. checks that the computer has RAM above &h8000 (either a Dragon64 or upgraded Dragon32),

2. switches to Map1 and copies the BASIC and DOS ROMS to RAM

3. copies most of itself (&h3900 to &h54B6) into the upper RAM area starting at &hE000,
4. relocates &h004E bytes of its code that was at &h3759 into addresses &h7ECD to &h7F1B – that is into a part of the RAM above &h7500 that was protected by the Basic loader,

5. JMPs to &hE00F to continue by

a. setting the stack at &h7FFD,

b. modifying RAM hooks at &h164 onwards,

c. patches the Dispatch table at &h8154

d. sets the restart vector to point to &h7ECD

e. sets a screen size toggle for 32 x 16 and 80 x 24 at &H7BC8

f. selects DragonPlus video RAM and clears it

g. initializes the 6845 registers with values from a table at &hE369

h. sets printer and console parameters to suit 80 columns

i. sets traps for keyboard codes used by the EDIT + editor

j. displays a message on the Dragon text page &h400 prompting the user to switch to the 80 column monitor output
k. switches video output to the DragonPlus card and displays a Compusense copyright message … and then …
6. Awaits user input and redirects output to the DragonPlus 80 column display.

Thereafter the Edit+128 Editor runs in the Dragon’s upper RAM memory above &hE000 with a small bootstrap portion and a flags and workpad area in the Dragon’s lower memory bank from &h7500 to &h7FFF.
Once in place the normal Dragon screen output appears on the 80 Column display and BASIC, DRAGONDOS and other operations all appear on that screen rather than the Dragon’s Text memory page.
EDIT + 128 Extensions to Dragon BASIC

Most of these changes are achieved by redirecting the Dragon’s Microsoft BASIC command hooks to new code in the EDIT+128 program and are shared by the Edit+64 program which gave a 50 by 24 text display on the Dragon’s graphics pages.

The CLS command has been extended as follows:

CLS 32
Set Underline mode ON

CLS 33
Set Underline mode OFF

CLS 36
Set 32 by 16 mode (a non-scrolling window within the 80 x 24 screen)
CLS 37
Set 80 by 24 mode
CLS 40
Set Inverse text mode ON (on the 80 column screen this is just underline)

CLS 41
Set Inverse text mode OFF

CLS 90
Exit EDIT+ and return to standard Dragon Basic in 32 by 16 mode

CLS 91
Clears memory Bank A to all zeroes (0000 to 7FFF)
CLS 92
Clears memory Bank B to all zeroes

The PRINT@ command has been modified and extended as follows:

PRINT@ will automatically switch to the 32 by 16 mode window and allow programs to work as they would on the ordinary Dragon text screen.

PRINT! is used in the same way as the PRINT@ command, but on the 80 column screen. The PRINT! locations are 0 to 2047. For example PRINT!89,”TEST” prints on the second screen row at position 10.

CONTROL Codes

Decimal
Action
07 Bell

08 Backspace

10

Line Feed

12

Clear Screen

13

Carriage Return

16

Home Cursor

24

Erase to End of Screen

ESCAPE Code Sequences

These consist of at least 3 characters starting with the Escape Character – decimal 26 – followed by a 2nd character code and one or more parameter bytes:

ESC
Code
Parameters
Action

26
_
 00

Underline mode OFF

26
_
 01

Underline mode ON

26
I
 00

Inverse mode OFF

26
I
 01

Inverse mode ON

26
=
 Ypos Xpos
Move cursor to column Xpos and row Ypos

(Xpos 0 to 79 and Ypos 0 to 23)
The Dragon does not have an <Escape> key so these codes can only be produced by embedding the codes in text or CHR$ strings.
Autorepeat
This applies to all keys after holding a key down for about 1 second.

Additional Characters

As well as displaying the ASCII screen characters for codes 32 to 90 that match the keys on the normal Dragon Keyboard the DragonPlus Character ROM has extra characters. The characters from 91 to 128 can be displayed by holding the <CLEAR> key and pressing a number key as follows:

<CLEAR> and 1 2 3 4 5 6 7 8 9 0 : -

91 92 93 94 95 96 123 124 125 126 127 128

[\] ^ _ ‘ { | } ~ █ £
The normal function of the Dragon’s <CLEAR> key now requires <SHIFT><CLEAR> instead – such as to clear the screen and move the cursor to the top of the screen.

There is far more to the EDIT+128 program than is covered in these notes. It is a full editing program with search, replace, block moves and other features useful in a programming editor. The commands and features match those of the EDIT+64 program. except that EDIT+64 uses the graphics pages to display 51 by 24 text. See the EDIT+ documentation for details.

Extending PEEK and POKE to the DragonPlus memory banks

The Dragon’s existing PEEK and POKE commands can only be used to access the Dragon’s original memory (RAM and ROM) from &h000 to &hFFFF.

In order to access the extra memory on the DragonPlus board (BANKA and BANKB)

and to access the DragonPlus Video RAM there are two extra versions of the PEEK and POKE command available when using Edit+128.

When using Edit+128, BANKA and BANKB can be accessed as a single 64kilobyte memory block on the Dragon64 but only as a 32k memory bank on a Dragon32 with only 32k of base RAM.

PEEK$ and POKE$ are used to access the DragonPlus memory. The syntax is a little different as follows:

PEEK(address)$ returns the contents of a memory byte at address.

Example:
 PEEK(1234)$ returns the contents of location 1234.

POKE$address,value - puts value into the memory byte at address.

Example:
 POKE$1234,99 puts the value 99 into address 1234.

Valid DragonPlus RAM addresses are from &h0000 to &h7FFF for a Dragon32 and from &h0000 to &hFFFF for a Dragon64. Value must be a single byte (0 to 255).
PEEK! And POKE! Are used to access the DragonPlus Video RAM. The syntax is as follows:

PEEK(address)! returns the contents of a video memory byte at address.

Example:
 PEEK(1234)! returns the contents of video RAM location 1234.

POKE!address,value puts value into the memory byte at address.

Example:
 POKE$1234,65 puts the value 65 into address 1234.

(65 is displayed as “A”)
Valid DragonPlus VIDEO RAM addresses are from &h0000 to &h07FF.

Caution: The normal PEEK and POKE commands are still valid, but will access the Dragon’s normal memory. Take care to use the $ and ! suffixes.
USING DRAGONPLUS WITH OS9 AND FLEX
OS9 Drivers for DragonPlus
A diskette supplied with the DragonPlus board contains files which configure the Microware OS9 Operating System to take advantage of the DragonPlus 80 column by 24 row display and the 64 kilobytes of extended memory.

GO80 – The 80 Column Display module

The GO80 module modifies the OS9 terminal driver to use the DragonPlus 80 column by 24 row video screen.

GO80 should be copied into the OS9 Execution Directory – usually /D0/CMDS.
The Dragon version of OS9 already has a GO51 driver that uses 6 kilobytes of graphics pages as a 51 column by 24 row text display and many OS9 programs have been configured to use this. These programs may require some modification to take advantage of the DragonPlus resolution.

Important: The GO51 module includes keyboard drivers and routines that have not been duplicated in the GO80 module, so GO51 must be loaded and run before the GO80 module in order for it to work correctly.

GO80 will release the 6k of memory reserved by GO51 so that there is more memory available for programs. Use MFREE to check how much memory is free. The extra memory can then be used with a program like the Stylograph wordprocessor by using the memory size qualifier: eg. STYLO Mydocument #20K
VDISK – The Virtual Disk
The 64 kilobytes of RAM on the DragonPlus board may be used as a “virtual disk” (RAM Disk) as if it was a fast floppy disk. This will appear to OS9 as device V0.

V0 and VDISK should be copied into the OS9 Execution Directory – usually /D0/CMDS.
The Device Descriptor V0 and the Device Driver VDISK must be loaded before the virtual disk V0 can be used. The disk must be formatted before use with the VINIT command (see below).
The 64k virtual disk V0 has the following characteristics:

· The device is accessed as V0

· Normal OS9 directory structure is used

· Disk V0 has 240 sectors available
· Disk access is very fast compared to floppy disks

· The contents of V0 will be lost when the computer is switched off.

So use the virtual disk for frequently used programs, utilities and data files – or when copying between disks on a single disk system.

Formatting the Virtual Disk

The disk must be formatted using VINIT before it can be used. However VINIT will check the disk to see whether it is already formatted (in order to avoid erasing data) and if this is the case it will ask permission to continue. Either a Y or an N may be typed in, and these may be added as a parameter to the VINIT command. For example VINIT N may be included in the STARTUP script so that the virtual disk is not erased if OS9 is rebooted.

Getting Started With DragonPlus on OS9

The following instructions should get you started. Let’s assume that you only have a single disk system…

The 80 Column Display

1. BOOT OS9
Load the following modules by typing:

LOAD LOAD <enter>

LOAD COPY <enter>

LOAD DIR <enter>

2. Run GO51 by typing:

GO51<enter>

This will load the GO51 screen and keyboard drivers.
3. Remove the OS9 SYSTEM DISK and insert the DRAGONPLUS DRIVERS disk

4. Now type the following:

CHX /D0 <enter>

GO80 <enter>

Then switch to the DRAGONPLUS monitor output for the 80 column display.

The Virtual Disk V0
5. Load V0 and VINIT by typing
LOAD /V0 <enter>

LOAD /VINIT <enter>

VINIT <enter>

The RAM disk will now be initialized and you can use it in the same way as a normal floppy disk – for instance Type DIR /V0

Configuring An OS9 System Disk To Start With GO80 and VDISK
6. Copy files from the DRAGONPLUS DRIVERS disk to the RAM disk /V0 as follows:
COPY GO80 /V0/GO80 <enter>

COPY V0 /V0/V0 <enter>

COPY VDISK /V0/VDISK <enter>

COPY VINIT /V0/VINIT <enter>

COPY STARTUP /V0/STARTUP <enter>

7. Remove the DRAGONPLUS DRIVERS disk and insert a copy of your OS9 SYSTEM disk. Now type:
CHX /D0/CMDS <enter>

CHD /V0 <enter>

8. Copy the files from V0 into directory /D0/CMDS by typing:

COPY /VO/GO80 /D0/CMDS/GO80 <enter>

… and repeat for files V0, VDISK, VINIT.

9. Finally, delete the original STARTUP file from the root directory of your System Disk (or rename it) - before copying the STARTUP file from disk V0.

DEL /D0/STARTUP <enter>

COPY /V0/STARTUP /D0/STARTUP

That’s it - your System Disk is ready to BOOT straight into 80 columns with a RAMdisk.

A Patch for OS9 STYLO to use the 80 column display

At Offset $14E3 change $31 to $4E.
FLEX Update for DragonPlus
The update disk contains a version of FLEX which gives:
1. 80 by 24 video display on the DragonPlus board video output

2. A RAM Disk using the DragonPlus 64k memory expansion

Installing the new version of FLEX

1. Initialise a new disk using NEWDISK

2. Copy the files from the DragonPlus update disk to the new diskette

3. Copy files from your existing FLEX system disk onto the new disk but do not replace the files that were copied from the DragonPlus update disk:

i.e. Reply ‘N’ when the copy processes FLEX.SYS, DBASIC.CMD,

and ASN.CMD.

4. LINK FLEX.SYS on the new disk – i.e. LINK 1.FLEX.SYS
5. Switch off and reboot with the new disk – the FLEX logo will appear on screen.
6. Now switch to the DragonPlus monitor video output to continue from the date prompt. Note that the date is now in DD,MM,YY format.

DBASIC for FLEX

A version of DBASIC is provided for the 80 column screen. Note however that only 6 files may be used simultaneously and that windows on the 80 column screen do not scroll.

ASN and Drive Mapping

A special verson of the ASN command allows the RAM disk to be accessed as any drive number 0 to 3. This new facility affects the way that all disks are assigned by mapping the FLEX drive number to the actual disk. Typing ASN? will display the full version of the ASN command.

 Example:

ASN 0=F0, 1=V0, S=0, W=1 on a single drive system will make the floppy disk Drive 0 the System drive and the RAM disk the working drive.

WARNING: When using NEWDISK be sure that the disks are access with the normal numbers i.e. ASN 0=F0, 1=F1.

Initialising the Virtual Disk (RAM disk)

A new command VINIT is used to initialize the RAM disk. Just type VINIT and reply ‘Y’ to the prompt. Once initialized the RAM disk can be used like a normal disk. Use the ASN command to configure the FLEX drives as required.

Using the RAM disk

A good way to use the RAM disk is to store the commands that are used most frequently (eg. CAT COPY), or those that take a long time to load from disk (eg EDIT ASMB SPE).

This can be done on a single disk system by typing:

DRIVES 1

ASN 0=V0, 1=F0, S=A, W=1

…or on a twin disk system by typing:

DRIVES 2

ASN 0=V0, 1=F0, 2=F0, S=A, W=2

… and then copying the required files to the RAM disk – i.e. COPY 1,0,filename
By using the ALL facility of FLEX for the System drive assignment, the RAM disk is searched for a command before the floppy disks. Note however that the floppy disks will now have a different numbers – Floppy Drive 0 now becomes Drive 1 and Floppy Drive 1 becomes Drive 2.

Two EXEC command files have been included: RAMDISK1.TXT and RAMDISK2.TXT to initialize and setup the RAM disk in this way for single and twin drive systems.
These EXEC files can be modified as required to copy additional files and either used by typing EXEC 0.RAMDISK1 (assuming the RAMDISK1 is on the system disk in Drive 0) or including the command in the STARTUP.TXT file which is processed when FLEX is booted.
APPENDIX A: The DragonPlus Character Set
The Character set is held in a 2764 EPROM (8k by 8 bits) which actually has space for two 256 character sets although only the first 4k has been programmed. There are a number of jumper pads next to the character EPROM that might have been intended to allow switching between character sets in the lower 4k or the upper 4k of the EPROM.

The DragonPlus character set uses 16 bytes to define the dot pattern for each character code. Each individual scan line of the character pattern is one byte (8 bits). A 0 bit represents an “off bit” (blank background) and a 1 bit an “on bit” displayed as a white dot on the VDU. The unused column bits (bit 7 and bit 0) provide an inter character space.

Register R9 of the 6845 specifies the number of scanlines per character. DragonPlus uses 11 scanlines. Byte 0 and Byte A of each character are zeros – to leave a blank space for interline spacing. Bytes B,C,D,E and F are not read by the 6845 and are always 00
The most significant bit in each byte represents the left hand column and the least significant bit the right most column. The first and last bits are usually zero to leave an inter-character gap.
Here is the first character as defined in the Character EPROM…
	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code

	Byte 0
	
	
	
	
	
	
	
	
	00

	Byte 1
	
	
	
	
	
	
	
	
	0C

	Byte 2
	
	
	
	
	
	
	
	
	10

	Byte 3
	
	
	
	
	
	
	
	
	10

	Byte 4
	
	
	
	
	
	
	
	
	38

	Byte 5
	
	
	
	
	
	
	
	
	10

	Byte 6
	
	
	
	
	
	
	
	
	10

	Byte 7
	
	
	
	
	
	
	
	
	10

	Byte 8
	
	
	
	
	
	
	
	
	7C

	Byte 9
	
	
	
	
	
	
	
	
	00

	Byte A
	
	
	
	
	
	
	
	
	00

	Byte B
	
	
	
	
	
	
	
	
	00

	Byte C
	
	
	
	
	
	
	
	
	00

	Byte D
	
	
	
	
	
	
	
	
	00

	Byte E
	
	
	
	
	
	
	
	
	00

	Byte F
	
	
	
	
	
	
	
	
	00

This pattern is stored in the first 16 bytes of the EPROM from address 0000 to 000F as:

00 0C 10 10 38 10 10 10 7C 00 00 00 00 00 00 00

What follows is a table showing the patterns for all 256 characters as originally defined.

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0000
	00
	0C
	10
	10
	38
	10
	10
	10
	7C
	00
	00
	00
	00
	00
	00
	00
	£

	0010
	00
	78
	08
	08
	08
	08
	08
	08
	78
	00
	00
	00
	00
	00
	00
	00
]

	0020
	00
	38
	24
	38
	24
	22
	24
	38
	40
	00
	00
	00
	00
	00
	00
	00
	ß

	0030
	00
	00
	00
	00
	7E
	24
	24
	24
	24
	00
	00
	00
	00
	00
	00
	00
	π

	0040
	00
	00
	00
	00
	00
	3A
	44
	44
	3A
	00
	00
	00
	00
	00
	00
	00
	ά

	0050
	00
	00
	14
	00
	38
	04
	3C
	44
	3E
	00
	00
	00
	00
	00
	00
	00
	ä

	0060
	00
	00
	14
	00
	1C
	22
	3E
	20
	1E
	00
	00
	00
	00
	00
	00
	00
	ë

	0070
	00
	00
	14
	00
	1C
	22
	22
	22
	1C
	00
	00
	00
	00
	00
	00
	00
	ö

	0080
	00
	70
	48
	48
	70
	4E
	44
	44
	44
	00
	00
	00
	00
	00
	00
	00
	PT

	0090
	00
	00
	14
	00
	18
	08
	08
	08
	1C
	00
	00
	00
	00
	00
	00
	00
	ï

	00A0
	00
	10
	2A
	04
	3B
	04
	3C
	44
	3E
	00
	00
	00
	00
	00
	00
	00
	ã

	00B0
	00
	00
	40
	20
	10
	08
	04
	02
	00
	00
	00
	00
	00
	00
	00
	00
	\

	00C0
	00
	18
	24
	24
	24
	5A
	5A
	24
	24
	18
	00
	00
	00
	00
	00
	00
	θ

	00D0
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	spc

	00E0
	00
	08
	14
	00
	38
	04
	3C
	44
	3E
	00
	00
	00
	00
	00
	00
	00
	â

	00F0
	00
	08
	14
	00
	1C
	22
	3E
	20
	1E
	00
	00
	00
	00
	00
	00
	00
	ê

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0100
	00
	08
	14
	00
	18
	08
	08
	08
	1C
	00
	00
	00
	00
	00
	00
	00
	î

	0110
	00
	08
	14
	00
	1C
	22
	22
	22
	1C
	00
	00
	00
	00
	00
	00
	00
	û

	0120
	00
	08
	14
	00
	22
	22
	22
	22
	1A
	00
	00
	00
	00
	00
	00
	00
	ô

	0130
	00
	3C
	40
	3C
	42
	42
	3C
	02
	3C
	00
	00
	00
	00
	00
	00
	00
	§

	0140
	00
	00
	08
	14
	22
	14
	08
	0022
	3E
	20
	20
	00
	00
	00
	00
	00
	ọ

	0150
	00
	00
	00
	00
	22
	22
	22
	32
	2C
	00
	00
	00
	00
	00
	00
	00
	μ

	0160
	00
	08
	10
	00
	38
	04
	3C
	44
	3E
	00
	00
	00
	00
	00
	00
	00
	á

	0170
	00
	08
	10
	00
	1C
	22
	3E
	20
	1E
	00
	00
	00
	00
	00
	00
	00
	é

	0180
	00
	08
	10
	00
	18
	08
	08
	08
	1C
	00
	00
	00
	00
	00
	00
	00
	í

	0190
	00
	08
	10
	00
	1C
	22
	22
	22
	1C
	00
	00
	00
	00
	00
	00
	00
	ó

	01A0
	00
	08
	10
	00
	22
	22
	22
	2C
	1A
	00
	00
	00
	00
	00
	00
	00
	ú

	01B0
	00
	08
	04
	00
	38
	0422
	3C
	44
	3E
	00
	00
	00
	00
	00
	00
	00
	à

	01C0
	00
	08
	04
	00
	1C
	22
	3E
	20
	1E
	00
	00
	00
	00
	00
	00
	00
	è

	01D0
	00
	08
	04
	00
	18
	08
	08
	08
	1C
	00
	00
	00
	00
	00
	00
	00
	ì

	01E0
	00
	08
	04
	00
	1C
	22
	22
	22
	1C
	00
	00
	00
	00
	00
	00
	00
	ò

	01F0
	00
	08
	04
	00
	22
	22
	22
	26
	1A
	00
	00
	00
	00
	00
	00
	00
	ù

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0200
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	sp

	0210
	00
	08
	08
	08
	08
	08
	08
	00
	08
	00
	00
	00
	00
	00
	00
	00
	!

	0220
	00
	14
	14
	14
	14
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	“

	0230
	00
	00
	14
	14
	3E
	14
	3E
	14
	14
	00
	00
	00
	00
	00
	00
	00
	#

	0240
	00
	08
	1E
	28
	28
	1C
	0A
	0A
	3C
	08
	00
	00
	00
	00
	00
	00
	$

	0250
	00
	20
	52
	24
	08
	10
	24
	4A
	04
	00
	00
	00
	00
	00
	00
	00
	%

	0260
	00
	08
	14
	14
	18
	18
	2A
	24
	1A
	00
	00
	00
	00
	00
	00
	00
	&

	0270
	00
	08
	08
	10
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	‘

	0280
	00
	04
	08
	10
	10
	10
	10
	08
	04
	00
	00
	00
	00
	00
	00
	00
	(

	0290
	00
	10
	08
	04
	04
	04
	04
	08
	10
	00
	00
	00
	00
	00
	00
	00
)

	02A0
	00
	00
	00
	08
	2A
	1C
	2A
	08
	00
	00
	00
	00
	00
	00
	00
	00
	*

	02B0
	00
	00
	00
	08
	08
	3E
	08
	08
	08
	00
	00
	00
	00
	00
	00
	00
	+

	02C0
	00
	00
	00
	00
	00
	00
	00
	18
	18
	08
	10
	00
	00
	00
	00
	00
	,

	02D0
	00
	00
	00
	00
	00
	3E
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	-

	02E0
	00
	00
	00
	00
	00
	00
	00
	18
	18
	00
	00
	00
	00
	00
	00
	00
	.

	02F0
	00
	00
	00
	02
	04
	08
	10
	20
	40
	00
	00
	00
	00
	00
	00
	00
	/

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0300
	00
	3C
	42
	46
	4A
	52
	62
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	0

	0310
	00
	08
	18
	08
	08
	08
	08
	08
	1C
	00
	00
	00
	00
	00
	00
	00
	1

	0320
	00
	3C
	42
	02
	04
	08
	10
	20
	7E
	00
	00
	00
	00
	00
	00
	00
	2

	0330
	00
	7E
	02
	04
	08
	04
	02
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	3

	0340
	00
	44
	44
	44
	44
	7E
	44
	04
	04
	08
	00
	00
	00
	00
	00
	00
	4

	0350
	00
	7E
	40
	40
	7C
	02
	02
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	5

	0360
	00
	1C
	20
	40
	40
	7C
	42
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	6

	0370
	00
	7E
	02
	04
	08
	10
	20
	20
	20
	00
	00
	00
	00
	00
	00
	00
	7

	0380
	00
	3C
	42
	42
	3C
	42
	42
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	8

	0390
	00
	3C
	42
	42
	3E
	02
	02
	04
	38
	00
	00
	00
	00
	00
	00
	00
	9

	03A0
	00
	00
	00
	18
	18
	00
	18
	18
	00
	00
	00
	00
	00
	00
	00
	00
	:

	03B0
	00
	00
	00
	18
	18
	00
	18
	18
	08
	10
	00
	00
	00
	00
	00
	00
	;

	03C0
	00
	00
	04
	08
	10
	20
	10
	08
	04
	00
	00
	00
	00
	00
	00
	00
	<

	03D0
	00
	00
	00
	00
	7E
	00
	7E
	00
	00
	00
	00
	00
	00
	00
	00
	00
	=

	03E0
	00
	20
	10
	08
	04
	08
	10
	20
	00
	00
	00
	00
	00
	00
	00
	00
	>

	03F0
	00
	1C
	22
	02
	04
	08
	08
	00
	08
	00
	00
	00
	00
	00
	00
	00
	?

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0400
	00
	00
	0C
	12
	2E
	2A
	2E
	20
	1E
	00
	00
	00
	00
	00
	00
	00
	@

	0410
	00
	18
	24
	42
	42
	7E
	42
	42
	42
	00
	00
	00
	00
	00
	00
	00
	A

	0420
	00
	7C
	22
	22
	7C
	22
	22
	22
	7C
	00
	00
	00
	00
	00
	00
	00
	B

	0430
	00
	3C
	42
	40
	40
	40
	40
	22
	3C
	00
	00
	00
	00
	00
	00
	00
	C

	0440
	00
	7C
	22
	22
	22
	22
	22
	22
	7C
	08
	00
	00
	00
	00
	00
	00
	D

	0450
	00
	7E
	40
	40
	7C
	40
	40
	40
	7E
	00
	00
	00
	00
	00
	00
	00
	E

	0460
	00
	7E
	40
	40
	7C
	40
	40
	40
	40
	00
	00
	00
	00
	00
	00
	00
	F

	0470
	00
	3C
	42
	40
	4E
	42
	42
	46
	3A
	00
	00
	00
	00
	00
	00
	00
	G

	0480
	00
	42
	42
	42
	7E
	42
	42
	42
	42
	00
	00
	00
	00
	00
	00
	00
	H

	0490
	00
	1C
	08
	08
	08
	08
	08
	08
	1C
	00
	00
	00
	00
	00
	00
	00
	I

	04A0
	00
	0E
	04
	04
	04
	04
	04
	24
	18
	00
	00
	00
	00
	00
	00
	00
	J

	04B0
	00
	42
	44
	48
	70
	70
	48
	44
	42
	10
	00
	00
	00
	00
	00
	00
	K

	04C0
	00
	40
	40
	40
	40
	40
	40
	40
	7E
	00
	00
	00
	00
	00
	00
	00
	L

	04D0
	00
	42
	66
	5A
	5A
	42
	42
	42
	42
	00
	00
	00
	00
	00
	00
	00
	M

	04E0
	00
	42
	42
	62
	52
	4A
	46
	42
	42
	00
	00
	00
	00
	00
	00
	00
	N

	04F0
	00
	3C
	42
	42
	42
	42
	42
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	O

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0500
	00
	7C
	42
	42
	7C
	40
	40
	40
	40
	00
	00
	00
	00
	00
	00
	00
	P

	0510
	00
	3C
	42
	42
	42
	42
	4A
	44
	3A
	00
	00
	00
	00
	00
	00
	00
	Q

	0520
	00
	7C
	42
	42
	7C
	50
	48
	44
	42
	00
	00
	00
	00
	00
	00
	00
	R

	0530
	00
	3C
	42
	40
	3C
	02
	02
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	S

	0540
	00
	3E
	08
	08
	08
	08
	08
	08
	08
	08
	00
	00
	00
	00
	00
	00
	T

	0550
	00
	42
	42
	42
	42
	42
	42
	42
	3C
	00
	00
	00
	00
	00
	00
	00
	U

	0560
	00
	42
	42
	42
	42
	42
	42
	24
	18
	00
	00
	00
	00
	00
	00
	00
	V

	0570
	00
	42
	42
	42
	42
	5A
	5A
	66
	42
	00
	00
	00
	00
	00
	00
	00
	W

	0580
	00
	42
	42
	24
	18
	18
	24
	42
	42
	00
	00
	00
	00
	00
	00
	00
	X

	0590
	00
	42
	42
	42
	42
	18
	08
	08
	08
	00
	00
	00
	00
	00
	00
	00
	Y

	05A0
	00
	7E
	02
	04
	08
	10
	20
	40
	7E
	00
	00
	00
	00
	00
	00
	00
	Z

	05B0
	00
	1E
	10
	10
	10
	10
	10
	10
	1E
	00
	00
	00
	00
	00
	00
	00
	[

	05C0
	00
	00
	40
	20
	10
	08
	04
	02
	00
	00
	00
	00
	00
	00
	00
	00
	\

	05D0
	00
	78
	08
	08
	08
	08
	08
	08
	78
	00
	00
	00
	00
	00
	00
	00
]

	05E0
	00
	08
	14
	22
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	^

	05F0
	00
	00
	00
	00
	00
	00
	00
	00
	7E
	00
	00
	00
	00
	00
	00
	00
	_

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0600
	00
	08
	08
	04
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	‘

	0610
	00
	00
	00
	00
	38
	04
	3C
	44
	3E
	00
	00
	00
	00
	00
	00
	00
	a

	0620
	00
	20
	20
	20
	3C
	22
	22
	22
	3C
	00
	00
	00
	00
	00
	00
	00
	b

	0630
	00
	00
	00
	00
	1C
	22
	20
	22
	1C
	00
	00
	00
	00
	00
	00
	00
	c

	0640
	00
	02
	02
	02
	1E
	22
	22
	22
	1E
	08
	00
	00
	00
	00
	00
	00
	d

	0650
	00
	00
	00
	00
	1C
	22
	3E
	20
	1E
	00
	00
	00
	00
	00
	00
	00
	e

	0660
	00
	0C
	12
	10
	38
	10
	10
	10
	10
	00
	00
	00
	00
	00
	00
	00
	f

	0670
	00
	00
	00
	00
	1A
	26
	22
	26
	1A
	02
	1C
	00
	00
	00
	00
	00
	g

	0680
	00
	20
	20
	20
	3C
	22
	22
	22
	22
	00
	00
	00
	00
	00
	00
	00
	h

	0690
	00
	00
	08
	00
	18
	08
	08
	08
	1C
	00
	00
	00
	00
	00
	00
	00
	i

	06A0
	00
	00
	02
	00
	02
	02
	02
	02
	02
	22
	1C
	00
	00
	00
	00
	00
	j

	06B0
	00
	20
	20
	22
	24
	28
	38
	24
	22
	00
	00
	00
	00
	00
	00
	00
	k

	06C0
	00
	08
	08
	08
	08
	08
	08
	08
	04
	00
	00
	00
	00
	00
	00
	00
	l

	06D0
	00
	00
	00
	00
	34
	2A
	2A
	2A
	2A
	00
	00
	00
	00
	00
	00
	00
	m

	06E0
	00
	00
	00
	00
	2C
	32
	22
	22
	22
	00
	00
	00
	00
	00
	00
	00
	n

	06F0
	00
	00
	00
	00
	1C
	22
	22
	22
	1C
	00
	00
	00
	00
	00
	00
	00
	o

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	

	0700
	00
	00
	00
	00
	2C
	32
	22
	32
	2C
	20
	20
	20
	00
	00
	00
	00
	p

	0710
	00
	00
	00
	00
	1A
	26
	22
	26
	1A
	02
	02
	02
	00
	00
	00
	00
	q

	0720
	00
	00
	00
	00
	2C
	32
	20
	20
	20
	00
	00
	00
	00
	00
	00
	00
	r

	0730
	00
	00
	00
	00
	1E
	20
	1C
	02
	3C
	00
	00
	00
	00
	00
	00
	00
	s

	0740
	00
	10
	10
	10
	3D
	10
	10
	12
	0C
	00
	00
	00
	00
	00
	00
	00
	t

	0750
	00
	00
	00
	00
	22
	22
	22
	26
	1A
	00
	00
	00
	00
	00
	00
	00
	u

	0760
	00
	00
	00
	00
	22
	22
	22
	14
	08
	00
	00
	00
	00
	00
	00
	00
	v

	0770
	00
	00
	00
	00
	22
	22
	2A
	2A
	14
	00
	00
	00
	00
	00
	00
	00
	w

	0780
	00
	00
	00
	00
	22
	14
	08
	14
	22
	00
	00
	00
	00
	00
	00
	00
	x

	0790
	00
	00
	00
	00
	22
	22
	22
	26
	1A
	02
	1C
	00
	00
	00
	00
	00
	y

	07A0
	00
	00
	00
	00
	3E
	04
	08
	10
	3E
	00
	00
	00
	00
	00
	00
	00
	z

	07B0
	00
	0C
	10
	10
	20
	20
	10
	10
	0C
	00
	00
	00
	00
	00
	00
	00
	{

	07C0
	00
	08
	08
	08
	00
	00
	08
	08
	08
	00
	00
	00
	00
	00
	00
	00
	¦

	07D0
	00
	18
	04
	04
	02
	02
	04
	04
	18
	00
	00
	00
	00
	00
	00
	00
	}

	07E0
	00
	10
	2A
	04
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	~

	07F0
	00
	7E
	7E
	7E
	7E
	7E
	7E
	7E
	7E
	00
	00
	00
	00
	00
	00
	00
	█

From 0800 to 0FF0 are underlined characters which are a repeat of the characters above.
For underlining, Byte 9 in each character is set to 7E (but FF would be better).

	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code

	Byte 0
	
	
	
	
	
	
	
	
	00

	Byte 1
	
	
	
	
	
	
	
	
	0C

	Byte 2
	
	
	
	
	
	
	
	
	10

	Byte 3
	
	
	
	
	
	
	
	
	10

	Byte 4
	
	
	
	
	
	
	
	
	38

	Byte 5
	
	
	
	
	
	
	
	
	10

	Byte 6
	
	
	
	
	
	
	
	
	10

	Byte 7
	
	
	
	
	
	
	
	
	10

	Byte 8
	
	
	
	
	
	
	
	
	7C

	Byte 9
	
	
	
	
	
	
	
	
	7E

	Byte A
	
	
	
	
	
	
	
	
	00

	Byte B
	
	
	
	
	
	
	
	
	00

	Byte C
	
	
	
	
	
	
	
	
	00

	Byte D
	
	
	
	
	
	
	
	
	00

	Byte E
	
	
	
	
	
	
	
	
	00

	Byte F
	
	
	
	
	
	
	
	
	00

This pattern is stored in the first 16 bytes of the EPROM from address 0000 to 000F as:

00 0C 10 10 38 10 10 10 7C 7E 00 00 00 00 00 00

	Offset
	+

0
	+

1
	+

2
	+

3
	+

4
	+

5
	+

6
	+

7
	+

8
	+

9
	+

A
	+

B
	+

C
	+

D
	+

E
	+

F
	Char

	0800
	00
	0C
	10
	10
	38
	10
	10
	10
	7C
	7E
	00
	00
	00
	00
	00
	00
	£

	0810
	00
	78
	08
	08
	08
	08
	08
	08
	78
	7E
	00
	00
	00
	00
	00
	00
]

	…
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	FFF0
	00
	7E
	7E
	7E
	7E
	7E
	7E
	7E
	7E
	7E
	00
	00
	00
	00
	00
	00
	

The character set seems to have been chosen mainly for word processing. The use of 128 codes just to provide underlined characters seems particularly poor. Inverse (black on white) characters would be more visible.

Also there are no block graphics characters or box and line characters as can be found in the IBM set on character page 437.
The IBM Mono Graphics Adapter also has the benefit of a second parallel bank of Video RAM which stores “attributes” which are combined with the character information to give Bright, Underline, Blinking etc.
Some thoughts about modifications to the DragonPlus Video configuration

Changing the screen character set
The choice of the versatile 6845 CRT Controller for the DragonPlus display means that it is possible to reconfigure the registers to display a wide range of screen text resolutions.

There are a few constraints:

· The character generator circuit uses an 8 bit parallel to serial converter, and the addressing of the Character ROM fetches one byte per row of the character matrix. This fixes the character matrix that defines the characters at 8 bits wide. So each character can only be a maximum of 8 dots wide – and if there is to be a gap between each character then only 6 or 7 of the bits will be used.

· The total number of character positions (columns x rows) must fit within the 2kilobytes of Video RAM (2048 bytes). It seems odd that the Dragon Plus Edit+128 program uses 24 rows (1920 bytes) rather than 25 rows (2000 bytes). Perhaps 24 was chosen to allow a buffer of 128 bytes for scrolling.

The number of vertical dots that make up a character cell is not constrained by the hardware circuitry to the same extent. The value in register R9 of the 6845 specifies how many vertical scan rows of dots the 6845 will fetch from the Character ROM before it moves down to the next screen row. The number chosen by Compusense for the DragonPlus board is 11 rows for each character. Don’t be confused that the number loaded into register R9 is only 10 (&h0A) - the R9 value is always 1 less than the row total because the row counter starts at 0.
This vertical row count could be decreased, for example to allow an 8 by 8 character cell, although that would not allow sufficient rows to provide true descenders on lower case letters like “g” or “y”. Or it could be increased, provided that the Character ROM has sufficient row addresses. In the case of the DragonPlus board the Character ROM and its addressing circuitry allows up to 16 rows per character cell.
In this way, with suitably defined characters in the Character ROM it would be possible to display taller or shorter characters, and a different number of rows and columns of text on the screen.

The challenge would be to define a character set to put in an EPROM and then to set up the 6845’s Vertical Timing registers to suit the chosen resolution.

Changing the 6845 Register Values

The PAL standard has 625 scan lines, split into two interlaced fields of 312 scan lines each, and the synch frequency is 50hz.

The values chosen for the 6845 registers should match this 312 line total.

Scan lines per field = (R4 + 1) x (R9 + 1) + R5 = 312 or as close as possible

In the BBC computer Mode 3 (which is text only and 80 x 25 resolution) the figures used are R4= 30, R5=02, R9=9 and taking into account that R4 and R9 are 0 based counters the calculation looks like this:

(R4 + 1) x (R9 + 1) +R5 which is

 31 x 10 + 2 = 312 exactly
The Compusense DragonPlus board also uses the PAL standard and the corresponding figures used are:

R4= 25, R9=10, R5=30 so the calculation looks like this:

(R4 + 1) x (R9 + 1) +R5 which is

 26 x 11 + 30 = 316

A more logical set of values to give 312 would appear to be the BBC scheme

R4=27, R9=10, R5=4, leaving R6 (displayed rows) at 24 and R7 (vsynch) at 25.
(R4 + 1) x (R9 + 1) +R5 which is

 28 x 11 + 2 = 312

The number of screen columns and rows is constrained by the 2k VRAM. Currently the resolution of the DragonPlus board is 80 x 24 but it could be set to 64 x 32 or 72 x 28.
A Block Graphics Character Set

It is possible to devise a block graphic character set for the codes from 128 to 255. The Dragon’s semigraphic block graphics provided by the 6847 VDG uses 4 blocks in a 2x2 matrix. :

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	 240 241 242 243

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	 244 245 246 247

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	 248 249 250 251

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	 252 253 254 255

This would require a 8 dot by 8 dot character matrix to define the text characters as well as the block graphics. This is how the Sinclair Spectrum character set was defined – but the lowercase characters with descenders have to sit above the line.

As the DragonPlus display is monochrome, only 16 codes would be needed .This would allow sufficient codes to have inverse for all the alphanumeric characters and extra characters to outline grids and boxes
An alternative arrangement could use 6 blocks in a 3x2 matrix, 8 dots wide by 12 dots tall. This was used for the TRS-80 Model 1 graphics.
The TRS-80 Model 1 uses 64 codes from 128 to 191 to define its block graphics:

	TRS-80

Model 1
Code 128 +
	1
	2

	
	4
	8

	
	16
	32

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	128
	
	129
	
	130
	
	131
	
	132
	
	133
	
	134
	
	135

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	136
	
	137
	
	138
	
	139
	
	140
	
	141
	
	142
	
	143

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	144
	
	145
	
	146
	
	147
	
	148
	
	149
	
	150
	
	151

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	152
	
	153
	
	154
	
	155
	
	156
	
	157
	
	158
	
	159

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	160
	
	161
	
	162
	
	163
	
	164
	
	165
	
	166
	
	167

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	168
	
	169
	
	170
	
	171
	
	172
	
	173
	
	174
	
	175

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	176
	
	177
	
	178
	
	179
	
	180
	
	181
	
	182
	
	183

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	184
	
	185
	
	186
	
	187
	
	188
	
	189
	
	190
	
	191

The DragonPlus character EPROM has 16 bytes (16 scan lines) for each character, of which just 11 are used. If 12 scan lines were used then this could work.

This scheme still leaves a further 64 available character codes that could be used for Inverse characters, lines and boxes, arrows and figures like this:
	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code
	
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code

	Byte 0
	
	
	
	
	
	
	
	
	FF
	
	
	
	
	
	
	
	
	
	00

	Byte 1
	
	
	
	
	
	
	
	
	E7
	
	
	
	
	
	
	
	
	
	1A

	Byte 2
	
	
	
	
	
	
	
	
	DB
	
	
	
	
	
	
	
	
	
	1A

	Byte 3
	
	
	
	
	
	
	
	
	BD
	
	
	
	
	
	
	
	
	
	00

	Byte 4
	
	
	
	
	
	
	
	
	BD
	
	
	
	
	
	
	
	
	
	77

	Byte 5
	
	
	
	
	
	
	
	
	81
	
	
	
	
	
	
	
	
	
	77

	Byte 6
	
	
	
	
	
	
	
	
	BD
	
	
	
	
	
	
	
	
	
	77

	Byte 7
	
	
	
	
	
	
	
	
	BD
	
	
	
	
	
	
	
	
	
	08

	Byte 8
	
	
	
	
	
	
	
	
	BD
	
	
	
	
	
	
	
	
	
	08

	Byte 9
	
	
	
	
	
	
	
	
	FF
	
	
	
	
	
	
	
	
	
	08

	Byte A
	
	
	
	
	
	
	
	
	FF
	
	
	
	
	
	
	
	
	
	08

	Byte B
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte C
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte D
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte E
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte F
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Bit (
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code
	
	7
	6
	5
	4
	3
	2
	1
	0
	Hex Code

	Byte 0
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte 1
	
	
	
	
	
	
	
	
	FF
	
	
	
	
	
	
	
	
	
	01

	Byte 2
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	01

	Byte 3
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	01

	Byte 4
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	01

	Byte 5
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	FF

	Byte 6
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	01

	Byte 7
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	FF

	Byte 8
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	01

	Byte 9
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	01

	Byte A
	
	
	
	
	
	
	
	
	80
	
	
	
	
	
	
	
	
	
	01

	Byte B
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte C
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte D
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte E
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

	Byte F
	
	
	
	
	
	
	
	
	00
	
	
	
	
	
	
	
	
	
	00

Monitor/VDU

output

Register data

Register select

Hsynch, Vsynch, cursor

�

Serial data

Timing

signals

Chip select

Video processing logic

Shift Register

Video Data

Addresses

Octal Latch

Character Generator

2k Static Video RAM

Memory Address decoding & multiplexing

6845

CRTC

Dragon

Mother board

Address select

� (Compusense Ltd P.O.Box 169, 286D Green Lanes,London NE13 5XA)

PAGE
E.P.Mooney - Softsystems

[image: image2.emf]

Character clock

