
DRAGONI32

INFORMATION
FOR MACHINE CODE

USERS!
Published by Dragon Data Ltd., March 83

CASSETTE CONNECTIONS

The Dragon 32 may be connected to most audio cassette recorders
but some problems may be encountered if the recorder has an
automatic level control. To connect your own lead you will require
a 5 pin DIN audio plug. The connections are as follows:

PIN 1 Remote (to switch recorder motor on/off)
PIN 2 Ground
PIN 3 Remote
PIN 4 Cassette input to Dragon
PIN 5 Output from Dragon to Cassette

Whilst we do not recommend a specific cassette recorder for the
Dragon 32, the following recorders have been found to work well
with the Dragon:-

Prinz TR12 and TR15; and Realistic recorder.

Should problems arise with saving and loading check that heads
are clean; remove MIC lead whilst loading and EAR lead whilst
saving; start recording after plastic header label; move Dragon
from close vicinity of television.

JOYSTICK CONTHOLLEES

Joysticks are now available but other joysticks may be connected
through the joystick ports using a 5 pin DIN plug. The connections
are as follows:

PIN1
PIN 2
PIN 3
PIN 4

PIN 5

X wiper
Y wiper
0 volts
Fire button
Input
+ 5 volts

PIN1
PIN 2
PINS
PIN 4
PINS

- VIL/^U

Sound Signal \^=^
Ground
Video Signal
Blank

f<" 10* SOUND
5 1

Npf,«y HOT USED

FRON1 VIEW OP
Blank NOT GROUND SOCKET ON DRAGON

USED

CONNECTIONS

The Dragon 32 is compatible with composite video signal monitors.
To connect a PAL monitor to the Dragon 32, using a 5 pin DIN wire
the plug as follows:-

PBINTEBS

The Dragon 32 will accept a wide range of printers currently
available. The printer port is the parallel I/O type for Centronics
interfaces. The cable connections are detailed on Page 2 of the
Additional Information booklet supplied with the machine. The-
connector required is a 20 way cable mounting socket.

The following printers have been found to work well with the
Dragon 32:

Seikosha GP100A and GP250A; Epson MX80; NEC PC8023; Amber
2400.

DISK DRIVES

The Disk Drive system initial package will consist of the following:
Disk Controller
Which will fit into the existing cartridge port.

Disk Unit
Which will be in a case housing one disk drive and also, a power
supply which is then fed out to the 13 Amp mains socket.

The power supply in the disk unit is capable of feeding two drives
and a maximum of four drives may be operated from the disk
controller.
The disk system is designed to work with either a Dragon 32 or an
upgraded 64k machine. With the 32k Dragon a disk operating
system will be provided on board the disk controller which will
work in conjunction with Microsoft Basic. This DOS may only be
used on a 32k system but, it would also be suitable for use by users
working in assembly language, in conjunction with an Editor/
Assembler program loaded via the tape or disk systems. The
operating system for the 64k machine will be OS-9, which will be
resident on disk.

64k UPGRADE

Due to the format of the memory map, in order to use the upper
32k of the memory map for RAM, the BASIC ROMS will have to be
disabled. If this is done, however, there will be no operating system
available to the user; i.e., the program will crash or alternatively
the screen will be filled with garbage. Therefore, the 64k RAM
facility may only be used in conjunction with the disk, having
loaded the operating system OS-9 into the lower region of RAM, or
alternatively, by users who write their own machine code operating
program to switch the upper RAM in under their own control.

MACHINE CODE

Machine language code can be put into memory using an Editor/
Assembler or by a BASIC program using the POKE command.
Routines entered in the latter manner can be accessed by using the
DEFUSE and USR commands, see pages 134/135 of the manual
supplied with the machine.
The Editor/Assembler will be available on cassette and cartridge.

The cartridge version will include a debugger and both versions
will enable the user to input programs in Assembley language.

MEMORY MAP OF DRAGON

-$FF
$100-$1FF
$200-$3FF

-5FF

Direct Page: Used by BASIC
Page 1: I/O drivers, Extended BASIC
Buffers for cassette, etc.,
Text Screen — default area
Graphics Screen/Program/Variable storage

$8000-$BFFF BASIC ROMS

$C000-$DFFF Cartridge ROM Locations

3FF00-03
SFF20-23
1FFC0-DF
IFFF0-FF

PI00
PI01
SAM chip register
Reset vectors

Reset vectors are actually mapped from BFF0

Default settings$BFF0
F2 SW13
F4 SW12
F6 FIRQ
F8 IRQ
FA SWI
FC NMI

100
103
10F
10C
106
109

Initialise Cartridge
Update clock, PLAY, etc.,

FE Reset B3B4 Initialise/Warm Start BASIC

PI00

A side (FF00)

B side (FF02)

PI01

A side (FF20)

i side (FF22)

Bit Function

0-6 Keyboard Row input
7 Joystick Comparator input
0,1 Joystick switch input
CA2 MUX Least significant byte select

0-7 Keyboard Column output
Printer output

CB1 IRQ — vertical sync
CB2 MUX M.S.B. select output

0 Cassette data input
1 Printer strobe
2-7 Digital-Analogue converter
CA1 Printer acknowledge IRQ (not used)
CAS Cassette relay control

0 Printer busy input
1 Single bit sound output
2 RAM size select sensing
3 CSS
4 GM0 / I/Ec p,,ry video controller
6 GM2 control lines

7 A/G

CB1 Cartridge port FIRQ
CB2 Sound enable output (to T.V.)

CASSETTE I/O

JSR $8015
JSR!

Turn on cassette relay
Turn off cassette relay

JSR $801B or Prepare cassette
JSR [$AOOC] for writing

$90/91 Leader byte count
$95/96 Cassette motor delay

JSR $801E Put out a byte to cassette from A

This is best used as part of BLKOUT (i.e. not directly used).
JSR [$A008] will write out a block of data, complete with
checksum, once the cassette has been prepared by JSR $8015.
Parameters to be set up for BLKOUT.

$7C Block type = 0: file header
1: data, FF: End of file

$7D Number of bytes to be put out
$7E/F Base address of bytes to be put to

cassette

JSR $8021 or Prepares the cassette for data input,
JSR [$A004] getting into BIT sync.

JSR $8024 Inputs the next eight data bits as a
byte in A.

JSR $8027 Gets the next bit in from cassette into
carry.

BLKIN: JSR [$A006]

Having been set up by JSR $8021, waits for $3C from tape to get
into BYTE sync then reads in the data following into the memory,
pointed to by $7E, and does a check sum on the result, also reading
block type and byte count. If all O.K. Zero flag set.

$81 Error code: cleared if read and verified
correctly.

As an example of the use of these routines see February "Personal
Computer World" for a cassette verify.

JSR $8006 or
JSR I

Polls the keyboard and returns the
character code in accumulator A. If no
new key has been pressed, A is cleared,
else the ASCII key code is returned (as
in the manual) after rollover has been
taken into account.

$150-159 Keyboard rollover table - writing $FF
to these locations will cause a sort of
auto repeat (once for each clearing of
the table).

I $149

I JSR $8012

JSR $8009

Alpha lock flag (Default $FF).

Updates the joystick readings stored in
$15A-D.

Blinks the cursor when the count has
fallen to 0.

TC~D &QC\r\ndbK ijiOUUL

Blink count.

Writes the character from A to the text
screen, scrolling if necessary. The
current cursor position is updated to
point to the next location
of the screen.

Point to the next location for screen
output.

Default screen address (Text) $400 - $5FF

JSR $800F Writes out the character in A to the
lineprinter,

$99 Lineprinter "comma field'' width
'!9A Last "comma field" width.
Si9B Line printer width.

Line printer: print head position.
(Buffer full) auto line feed flag
Default FF (= on). If 0 then carriage
return will be printed at end of line.

$14A-14F End of line termination sequence.

Printer end of line sequence.
14A 1

$14B
$14C
$14D
$14E

Number of characters to be printed in
E.O.L. sequence.
Return
Line feed
null
null

OIHEB USEFUL LOCATIONS

$19 Beginning of Text.
i!lB Beginning of Simple Variable Space,
i! 1D Beginning of Array pointer table.
$IF End of storage in use (= 1st free

location) set to [$1B] on clearing.
$21 Top of stack (from which stack grows

down).
$23 Top of string free place.
$27 Highest RAM available to BASIC.

$2D Points to statement to be Executed.
$2F Text pointer for BASIC warm start on

reset
$31 DATA line number.
I >33 DATA memory pointer.
$35 INPUT pointer.

$68 Current line number.

$6F Current device. 0 = VDU, -1 = cassette,
-2 = printer.

$70 End of file flag: 0 = character found.

$71 RESTART FLAG. If [$71] ^ $55 then a
full cold start will be performed on
RESET.

$72/73 Restart vector. If [$71] = $55 and $72
points to a NOP then restart will be to
that NOP (else coldstart).

$78 Cassette status: 0 = closed, 1 = input,
2 = open for output.

$87 Last key pressed (but may well have
been cleared by BREAK check).

$9D/E EXEC address.

$9F Start of a short self modifying routine
to read in the next useful character for
BASIC, continued in ROM.

$A6/7 Text pointer (part or self modifying
code). Points to current active byte.

$B0 Address of start of USR function
address table.

$B2 Foreground colour.
$B3 Background colour.
$B4 Active colour.
$B6 Graphics mode.
$B7/8 Top address of current graphics

screen.
$B9 Count of bytes in a row of graphics.
$BA/B Base address of current graphics

screen.

$BD/E Current X position.
$BF/C0 Current Y position.

$112-4 Timer $114 cycles 0-$FF in about 5s.

$120 Start of "STUB0" - Used to set up
entry points for BASIC keywords.
Number of normal reserved words.
Address of normal reserved words list.
Address of statement despatch table.

$125 Number of function reserved words
(tokens will be preceded by $FF).

$126 Address of function reserved word list,
$128 Address of function despatch table.

$ 1EA STUB 1: normally a dummy to make
end of stubs. Layout as for STUB0
except :-

$12D address of statement despatch routine.
$132 address of function despatch routine.

$134 STUB 2 (as above).
$134-147 Are normally used for the USE

function address.

$15E-1AF are subroutines (length 3 bytes) used by the BASIC ROM.
By default they return immediately with a RTS, but these can be
modified to jump to your own code to provide extensions to the
BASIC. Some of the more useful ones.

BOM routine
Address Called from
$167 Input a character.
Sil6A Output a character.
8182 Read an input line.
$18B Evaluate an expression,
$18E User error trap 1 error handler

System error trap j
$194 RUN
$19A Read in next statement (after

returning, the keyboard is polled for
break, so increasing the return address
by 4 will disable BREAK).

$1A3 Crunch BASIC line for storing.
$1A6 Decrunch BASIC line for output.

To access machine code from BASIC use A = USRnn(X). (Where nn is
a two digit number in the range 0-9). The entry point required
must first be set up by DEFUSRn = XXXX. XXXX is the position of
the machine code subroutine, e.g. to call a subroutine at $B7BA you
could use DEFUSR3 = &HB78A then A = USR03(X).

If the byte pointed to has value 0 then the value passed was zero,
otherwise it represents the binary exponent plus 128. The next
four bytes represent the absolute value of the mantissa in
normalised form. [X] + 5 points to a duplicate of the most
significant byte of the mantissa, except the top bit is cleared if the
number is positive or set for negative. Variables are stored with
this byte in place of the M.S.B.

To get the integer value of the floating point accumulator JSR
$8B2D, which returns the value of the F.A.C. in the D register.

To return an integer in the D register as a floating point number
terminate the subroutine with JMP $8C37 and the value will be
passed back as the value of the USR function.

Strings can be accessed using the VARPTR function. The pointer
will be stored in the floating accumulator and will point to a five
byte string descriptor. The first byte is the length and the third and
fourth contain the address of the start of the string.

DRAGON! 32
Dragon Data Ltd., Kenfig Industrial Estate, Margam, Fort lalbot, West Glam. 54579

