
SPRINT 1.1
USER SUPPLEMENT

CONTENTS

OASIS BASIC 1.1 page 1

Errors in the manual page 1

Ammendments to the manual page 1

Software support page 1

Appendix A
Compilation error codes page 2

Appendix B
Execution error codes page 3

Appendix C
OASIS BASIC description page 4

Appendix D
Summary of differences
From DRAGON BASIC page 11

Appendix F
Some hints if you have difficulties page 13

PLEASE READ APPENDIX F BEFORE USING THIS COMPILER

OASIS BASIC 1.1

OASIS BASIC 1.1 contains all the facilities of OASIS BASIC 1.0 plus commands and
functions to enable cassettes and printers to be used.

The following changes have been made :-

* The EOF function has been added.
* The PRINT command has been changed to allow output to

printers (1-2) and to cassettes (f-1).
* The INPUT and LINE INPUT commands now allow input from
cassettes (f-1).

* The POS function has been extended to work with
printers.

* OPEN and CLOSE commands to use cassettes have been
included.

* PRINT TAB and PRINT USING have been included.
* AUDIO and MOTOR commands have been included.

Errors in the Manual

Page 6 REM$ A$ [255] , X$(10,10) [10]
should read REM$ A$ [254] , X$(10,10) [10]

Page 6 "....causes the compiler to leave 255 bytes"
should read " causes the compiler to leave 254 bytes"

Page 18 4 PMODE 4,1 : PCLS : SCREEN,1
should read 4 PMODE 4,1 : PCLS : SCREEN 1,1

Ammendments to the manual

Version 1.1 is an upgrade of version 1.0 and therefore the appendices A to D have
been rewritten and are included in this supplement. Please ignore the appendices
i n the mai n manual.

SOFTWARE SUPPORT

Sprint is fully supported with upgrades issued periodically. Upgrades when
required are available for one pound seventy five pence.

If you experience any problems whatsoever please do not hesitate to contact us
at:

Oasis Software,
Alexandra Parade,
Weston super Mare,
Avon.

Or telephone us on 0934 419921 and ask for John Gross. We wil l be only too
pleased to help.

Appendix A .Compilation error codes

Code

000
001
002
003
004
005
006
007
008
009
010
Oil
012
013
014
015
017
018
019
020
021
036
037
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

Error description

Integer constant expected.
String constant expected.
"(" expected.
")" expected.
"[" expected.
"]" expected.
"," expected.
";" expected.
":" expected.
"@" expected.
ELSE expected.
TO expected.
THEN expected.
STEP expected.
End of line expected.
Name reserved in DRAGON BASIC.
NOT expected.
AND or OR expected.
Relational operator expected.
Multiplication operator expected.
Adding operator expected.
Integer identifier expected.
String identifier expected.
Integer too large.
No closing quotes for string.
DRAGON BASIC feature not supported.
Program too large.
Unary t or - can only be applied to integers.
This operation may not be applied to strings.
Operands of different types.
Integer expression expected.
String expression expected.
Invalid start of command.
Line number not in sequence.
Invalid item in DATA statement.
Line number expected.
2nd PCLEAR or value out of range.
Line number out of range.
Action in PUT wrong.
Array in PUT or GET must have two dimensions.
G parameter expected.
PSET or PRESET expected.
B or BF expected.
"-" expected.
"=" expected.
GOTO or GOSUB expected.
String or string variable expected.
";","," or end of statement expected.
Identifier expected.
Expression and variable of different types.
Error in FACTOR.
FN or USR function not defined.
TIMER may only be set to zero.

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

DATA string too long.
"/" expected.
"64" expected.
Array already in use — definition ignored.
Invalid directive.
String variable encountered before - definition ignored.
FN or USR definition expected.
Function already defined.
A directive must be the last command on a line.
String too large.
INLINE integer must be 'between 0 and 255.
Invalid INLINE item.
String variable expected.
"H" expected.
"ELSE" or end of line expected.
Hex digit expected.
Too many dimensions to an array.
Too few subscripts.
Too many subscripts or "}" expected.
Invalid PUT option.
Invalid file number.
ON or OFF expected.

Appendix B Execution error codes

Code Error description

Integer overflow.
Runtime stack overf low.
Range v io lat ion {e.g. subscript of array out of range).
RETURN with no GOSUB.
String value too long.
Division by zero.
Value less than zero (e.g. ON-GOSUB or ON-GOTO value
less than zero).
Illegal character (e.g. trying to use CHR$ on an integer
which is too large).
Empty string value.
RETURN missing.
Zero step in FOR command.
NEXT without FOR.
Error in READ, no data left.
Attempt to read string as an integer.
Attempt to read an integer as a string.
Argument to standard function or command out of range.
Error in PMODE; insufficient memory for graphics
mode and/or graphics page used by program.
Cassette not OPEN in correct mode.
Invalid option; "I" or "0" expected.
INPUT from cassette failure; end of file or not open for INPUT.
Error reading from cassette.

NOTE: Standard DRAGON BASIC error messages may also be produced.

Appendix C OASIS BASIC description

This appendix summarises the syntax of OASIS BASIC using EBNF (extended
Backus-Naur Form). EBNF is used to give a series of (production) rules for the
various objects of the program. Thus section 1 defines how programs are
constructed out of lines.

Wi th this notation the following conventions are used.

Objects Jn double quotes represent themselves.

e.g. "READ" implies that READ will be part of the program.

Alternatives are separated by | .

e.g. compound-command = if-command |
for-command |
next.

implies that a compound-command can either be an if-command, a for-command or a
next.

Definitions are terminated by a period.

Items enclosed in {} may be repeated zero or more times.

Items enclosed in [] may be repeated zero or once.

Items of the form (a lb I . . I z) .mean that one of a,b,..,z must be selected.

The following is a description of OASIS BASIC.

1, PROGRAMS

A program cons is ts of a series of numbered lines 0,1,,.,N. Each line cons is ts of
the line number fo l lowed by one or more commands separated by colons.

program = line {line}.

1ine = 1ine-number command-sequence.

command-sequence = command {":" command}

1i ne-number = integer

integer = digit {digit} | "&H" hex-digit {hex-digi t}

- d i g i t = "0" I "1" I "?" I "3" I "4" I "5" I "6" I "7" I "8" I
"9".

hex-digit = digit I "A" I

NOTE

I "C" | "D" I "E" I "F"

THE N+l lines of the program must be numbered 0,1,2,..,N.
.This can be achieved by using RENUM.

2. EXPRESSIONS

An expression can ^compute either an integer or a string value,

expression = and-expression {"OR" and-expression}.

and-expression = sub-expression ("AND" sub-expression}.

sub-expression = ["NOT"] sub-expression I
relational-expression.

relational-expression - simple-expression {relational-operator
simple-expression} ,

simple-expression = term {adding-operator term),

term = factor {multiplying-operator factor}.

factor = unary-operator factor | " (" expression ")")
function-call I variable 1 integer I string.

relational-operator =

adding-operator ="+" I "-".

multiplying-operator = "*" I "/" 1 "\".

unary-operator = "+" I "-".

variable = identifier [subscripts] .

subscripts = " (" expression {" ," expression }")".

string = ' " ' any- sequence- of -char act ers-,,except-

function-call = identifier parameter-list,

parameter-list = "(" expression {" ," exp ress ion } ") " ,

identifier = letter {(letter I d ig i t) } ["$"].

letter - "A" I "B" I "C" I "D" I "E" I "F" I "G" I "H" I "I" I
"J" I "K" I "L" t "M" I "N" I "0" | "P" I "Q" I "R" I
"S" I "T" I "U" I "V" I "W" I "X" | "Y" I "Z"

The available functions are:-

ASC CHR$ INKEYS STR$ VAL ABS
' F I X INT JOYSTK PEEK POINT PPOINT

RND SGN VARPTK LEFTS RIGHTS MID$
LEN POS HEX$ INSTR STRINGS EOF
USRO .. USR9 FNA .. FNZ

The following standard variable exists :-

TIMER

Notes

(a) FNA..FNZ and USRO.. USR9 are user defined functions.

(b) Numeric expressions and variables use integer values in the range
-32768..32767.

(c) "/" is integer division and "\ is integer remainder.

(d) INT and FIX are the identity function, i.e. INT (e) =
FIX(e) = e. However they are included for compatibility, e.g. the following code
can still be used to find the remainder of dividing X by Y.

X - INT{X/Y) * Y.

'(e) As with DRAGON BASIC only "+" can be used with strings.

(f) RND may only take parameters >= 1.

(g) PEEK takes one integer parameter in the range -32768..32767. Negative values
map onto values in the range 32768..65535,i.e. -1 = 65535 ,.., -32768 = 32768.

3. COMMANDS

command = 8ASI C-command I sound-command I graphi cs-command.

3.0 SOUND COMMANDS

Both PLAY and SOUND are supported.

(a) SOUND integer-expression, integer-expression.

{b) PLAY string-expression.

Note

All facilities of PLAY except execution of substrings are supported.

3.1 GRAPHICS COMMANDS

All graphics commands are supported.

(a) CIRCLE (x ,y) , r ,c ,h ,s ,e
where x,y,r and c are integer expressions, and h,s and e
are of the form (integer-expression) / 64.

(b) COLOR integer-express ion, integer-express ion.

(c) DRAW str ing-expression.

(d) GET <xl ,y l) - (x2,y2) ,array,G

PUT (x l ,y l) - (x2,y2)array,act ion

where xl,x2,yl and y2 are integer expressions and
"array" is a two dimesional integer array variable.

(e) LINE (xl,yl) - (x2,y2),a,b

where xl,x2,yl and y2 are integer expressions.

(f) PAINT (x,y),c,b.

where x, y, c and b are integer express!ons.

(g) PCLS c

where c is an integer expression.

(h) PCOPY a TO b where a and b are an integer expression,

(i) PMODE m,p.

where m and p ar-e an integer expression,

(j) PRESET (x ,y)

PSET (x ,y ,c)

RESET (x,y)

SET (x ,y ,c)

where x, y and c are an integer expressions,

(k) SCREEN t ,s

where t and s are an integer expression.

(1) PCLEAR integer.

Notes

(a) In DRAGON BASIC the last parameters of CIRCLE may be real
val ues. However in thi s versi on of BASIC we require
integer va lues . Using the above syntax maintains
compatibi l i ty, i.e. {32) /64 represents 0.5 in DRAGON
BASIC and 32 in this version of BASIC.

(b) Al l fac i l i t ies of DRAW except the execution of substrings are supported.

(c) PCLEAR takes an integer parameter in the range 0 to 8.

3.2 BASIC COMMANDS

BASI C-command = definiti on | si mple-command I

compound-command I read-command I

control-command I machine-comand I

comment I inline-command.

(a) Definitions

definition = "DEFFN" letter "(" identifier ")"•"=" expression t

"DEFUSR" digit " = "([("+" | "-")] integer | identifier)

("REMS'T'S"1) d i rec t i ve(" , " d i rec t i ve } !

"DIM" array-spec {"," array-spec}.

array-spec = identifier " (" integer { "," in teger} ") " ,

directive = string-def I compiler-option,

strtng-def = (identifier I array-spec) "[" integer "]".

compiler-option = (" C " I "L" I "N") ("+" | "-").

Notes

(a) The dimensions of an array may not be defined by variables.

(b) DEFUSR may be defined with an integer value in the range
-32768..32767.

(c) A string definition is used to specify the size of a
string variable or the size of components of the string
array. If a string variable is encountered before such a
definition it is given a default size (i.e. 32.)

For example REM$ AStlO], B$(20)[30l defines a variable A$ which can hold strings
up to 10 characters long and a string array B$ of 21 components each of which can
be a string of up to 30 characters. To be effective REM$ definitions should
contain the first "textual" occurance of the variables being defined.

A compiler option is used to control the compiler. "+" is used to turn on the
given option and "-" is used to switch it off.

C - controls generation of runtime checks.

L - controls the production of a listing.

N - controls the generation of code to record line numbers.

A directive command must be the last command on a line.

(b) SIMPLE COMMANDS

simple-command = "CLS" Cexpression] | "END" I "STOP" |

"CLEAR" integer [",'' integer]!

input-command I print-command I assignment

OPEN I CLOSE I AUDIO I MOTOR .

open = "OPEN" expression "," "#-1",expression .

close = "CLOSE" "#-1" .

audio = "AUDIO" ("ON" I "OFF") .

motor = "MOTOR" ("ON" I "OFF") .

input-command = "INPUT"Linput-option] vari ablet"," variable}.
"LINE" "INPUT" Cinput-option] variable .

print-command = "PRINT"[print-option-1 [" , "]]
[print-option-2]
print-list .

input-option = "1-1" "," I expression ";" .

print-option-1 = "#-1" I @ expression I "#-2" .

print-option-2 = "USING" expression ";" I "TAB" "("
expression ")"[("," I ";")] .

print-list = [expression]{("," I " ;") [expression]) .

assignment = ["LET"] variable "=" expression.

Notes

i) END and STOP both cause the program to terminate.

ii) CLEAR has no effect.

i i i) The expression in an INPUT command is restricted to be a simple
variable, a string or an arbitrary expression in parentheses.

(c) CONTROL COMMANDS

Control-command = "GOSUB" line-number I "GOTO" line-number I

"ON" expression "GOSUB" line-list I

"ON" expression "GOTO" line-list I "RETURN".

line-list = line-number £ " , " line-number}.

(d) COMPOUND COMMANDS

compound-command = if-command I for-command I next,

next = "NEXT" identifier {"," identifier}.

for-command = "FOR" identifier "=" expression "TO" expression
["STEP" expression].

if-command = "IF" expression "THEN action ["ELSE" action],

action = line-number I command-sequence.

(e) MACHINE COMMANDS

machine-command = "EXEC"(expression | "@" identifier) |

"POKE" expression "," expression.

Note

All expressions in machine commands are integer expressions in the ranges -
32768..32767 or 0..255. Negative values map onto integers in the range
32768..65535. •

(f) COMMENTS

comment = ("REM" I ""') any-sequence-of-characters.

(g) READ COMMANDS

Read-command = "READ" variable {"," variable} I "RESTORE" |

"DATA" data-item {"," data-item}

data-item = [("+ " I "-")] integer | string.

Note

String items must be enclosed in quotes.

(h) .INLINE COMMANDS

inline-command = "INLINE" inline-item {"," inline-item}.

inline-item = integer I identifier [" (" ") "] .

An inline command can be used to embed p-codes in a program. An inline-item which
is an integer must be in the range 0 to 255. If an inline-item is an identifier
then the address of the variable is generated as 2 bytes.

Appendix D Summary of differences from DRAGON BASIC

The main differences are as follows:-

(a) Integer values are used; not floating point.

(b) String variables have a fixed maximum size.
This size can be user defined or be the default size.

(c) Variables names cannot be used at runtime.

(d) Some new features (directives and the INLINE command)
have been added.

(e) Some features of DRAGON BASIC have been omitted.

(f) Certain conventions on program layout need to be
observed. For example reserved words and identifiers
may not contain spaces.

Some detailed differences are as follows:-

Statement

CLEAR n,h
CLS c
DATA
DEF FN
DEFUSRnn=address

DIM
END
EXEC address

FOR-NEXT
GOSUB
GOTO
IF THEN ELSE
INPUT
LET
LINE INPUT
ON GOSUB
ON 60TO
POKE location,value

PRINT
PRINT TAB
PRINT USING
PRINT 9
READ
RESTORE
RETURN
STOP

PLAY string

comments

No effect, n and h must be integers.
Same.
String values must be in quotes.
same.
Address must be an integer in the range-
32768.. 32767 or an array variable.
same.
same.
Address must be present and be in the
range -32768..32767.
Same.
Same.
Same.
Essentially the same.
Prompt expression more general.
Same.
Prompt expression more general.
Same.
Same.
Location must be an expression yielding
a value in the range - 32768..32767.
Same.
Same.
Same.
Same.
A numeric item may not be read as a string.
Same.
Same.
Same as END. CONT cannot be used to
continue the program.
The string may not contain the X command.
There will also be a limit on the size of
the string.

11

SOUND
AUDIO
CLOAD
CLOADM
CLOSE
CSAVE
CSAVEM
EOF
INPUT*-!
MOTOR
RENUM •
NEW
LLIST
CONT
DEL
EDIT
LIST
RUN
OPEN
PRINT*-!
SKIPF
TRON
TROFF
PRINT#-2
CIRCLE(x,y),r
COLOR
DRAW string

.SET
PUT
LINE
PAINT
PCLEAR n
PCLS
PCOPY
PMODE
PRESET
PSET
RESET
SCREEN
SET
ASC
CHR$
HEX$
INKEYS
INSTR
LEFTS
LEN
MID$
RIGHTS
STRINGS
STR$
VAL
ABS
ATN

Same.
Same.
Not included.
Not included.
Same.
Not included.
Not included.
Same.
Same.
Same.
Not included.
Not included.
Not included.
Not included.
Not included.
Not included.
Not included.
Not included.
Same.
Same.
Not included.
Not included.
Not included.
Same.

,c,h,s,e Special syntax for h,s and e.
Same.
The string may not contain the X command.
There will also be a limit on the s ize of
the string.
Same.
Same.
Same.
Same.
n must be an integer in the range 0..8.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Same.
Not included.

COS
EXP
FIX
INT
OOYSTK
LOG
MEM
PEEK(n)

POINT
POS
PPOINT
RND(n)
SSN
SIN
SQR
TAN
TIMER
USRnn
VAPTR
EOF

Not included.
Not included.
Same.
Same.
Same.
Not included.
Not included.
n must be an expression in the range
-32768..32767.
Same.
Same.
Same.
n>=l.
Same.
Not included.
Not included.
Not included.
Same.
Same.
Same.
Same.

Appendix F Some Hints If You Have Difficulties

ASCII SAVING

The Dragon manual is not very clear at all on the subject of ASCII saving, and
many users, quite understandably have been making BASIC saves of their programs
only to find a screen full of garbage when trying to load the BASIC program to be
compiled.

When saving your program be sure to put ',A' after the filename in quotes, for
example:

CSAVE "TEST",A (see page 3 of our manual)
CSAVE "TEST" will not work.

ASCII LOADING

The routines the Dragon uses to load blocks of ASCII code can leave a little to be
desired if the cassette player stops between blocks as it does when compiling from
tape. There are four common symptoms.

1. Th*e computer compiles the program but reports erratic
errors which make no sense and probably vary between
successive attempts at a compilation.

2. The compiler compiles the program, no errors are reported,
the tape just keeps running and the keyboard does not
respond. No more blocks are being loaded.

3. As in 2 but after a while "TOO MANY LINES" is reported.

4. Persistent "TAPE ERROR" reports.

13

What is happening is that the tape recorder is "running on" and not stopping
quickly enough between blocks to prevent it running on to the next block. This
does not present a problem if you are doing a CLOAD without the Compiler because
there is no delay between blocks. This can be easily cured by extending the
length of the header to each block. To do this all that is required is to use the
POKE 144 described in appendix E. we have found that doing a POKE 144,2 before
doing your CSAVE "FILENAME",A gives sufficient lattitude for most tape recorders.
With the Audio on, you will hear that the "whistle" at the start of each block has
been lengthened.

If you still experience problem 2 there is another solution. Add some extra lines
to your BASIC PROGRAM, REMS will do, and when the compiler requests maximum line
number, quote the line number of the last line you wish to compile and ignore the
extra lines.

UNDEFINED LINE

If the last line of your program contains an "IF" statement, errors may be
generated. To circumvent this just add an extra line with an "END" statement.
Note that the maximum line number this time is the line number of the "END"
statement.

RENUMBERING YOUR PROGRAM

Before attempting to compile your BASIC program don't forget to renumber it in
steps of 1 with the first line taking the number 0.

STRING TOO LARGE

Page 6 is incorrect. The maximum length of a string variable is 254 and not 255.
Our apologies.

GET AND PUT

When Dimensioning Arrays to store data for "PUTS" and "GETS" remember that an
integer variable uses only 2 bytes and not 5 as in the case of floating point
variables.

LINKER ERROR

If "LINKER ERROR" is experienced during linking it means that the program is too
large to be linked.

MID$

All three parameters are required. If the last parameter is omitted then error
006 will be generated.

