

WELCOME TO DRAGON
Dragon Data Limited welcome you to your new
software for your Dragon computer. We hope that

you enjoy using it as much as we enjoyed

producing it for you.

Look out for new titles in the Dragon software
range.

DREAM
AOS 16

DRAGON 6809 EDITOR- ASSEMBLER CONTENTS

LOADING THE PACKAGE o.oo... ooo ceceeceececceeneeeeeeceeeeceeeeecaesereeaesaeeaesneenneneeneesnneeieens 2
USING THE EDITOR... ccceccccecceecneeeeeeecneeseseecsnecnanecneeecneeeeeesneesireseneeeenaeenses 4
CASSETTE INPUT-OUTPUT 00000... cecccccecee cece ceeeenneeeeeeeeeeesettenteeeeeeerseeeneneas 13
6809 PROGRAMMING |... oo. cence ceeeesnecceeeeeneeseneeneeeeccreeseeenaeensnecsenecseeeeeecias 19
6609 ADDRESSING MODES0.. eee eeceeeeeeereeeeeeeneeeseseneeeerceneeeessenenesesecnnaaees 22
ASSEMBLER DIRECTIVES... eee cece eeeceeceecreersnaeecnsneeseseerenaeeesniaeeeeenteens 32
ASSEMBLER OPERATION000....ccccecccccececceneeeeeneesenseeeeeeeeeeeeeseeeectneeesseeneeseneeees 37
SUPPLEMENTARY INFORMATION0000.... cece eeceseeneeeeteeteteneeeeneneencneeeteeneeeeenees 42
APPENDIX A = SAMPLE MEMORY MAP ooo eee ee ceeeneceeeeenteeeeeeeeneeeeeneeaaes 44
APPENDIX B EDITOR OPERATION. ...000000. ccc cece ee enteeenseeeceeeeesiaeeerens 47
APPENDIX C1 INSTRUCTION OP-CODES 00... eee ee ese eeteneeeeneeerenees 50
APPENDIX C2 BRANCH INSTRUCTIONS ...00.... eee eeeeeeeneeneaeeeeteeeesenneeeees 53
APPENDIX C3. ASSEMBLER DIRECTIVES... ee cceceeeeeeneeeeeneeersereeeeenees 54
APPENDIX D ASSEMBLER ERROR CODES & KEYBOARD COMMANDS 54
APPENDIX E SYSTEMERROR MESSAGES00. cece eee e cee eeeeeceeeeecnetes 56
APPENDIX F SAMPLE PROGRAMG.000..cccece cc cesseeeesseecenaeeeeseeestneeeenenaes 58

LICENCE

Dream, in all machine readable formats and the written documentation accompanying
them, are copyrighted. The purchase of Dream conveys to the purchaser a licence to
use Dream for his/her own use and not for sale or free distribution to others. No other

licence, expressed or implied, is granted.

DREAM

OREANM is a software package for the Dragon 32 Micro Computer, designed to enable
the creation of files of text, and especially for the preparation, maintenance and
conversion to object code, of Assembler source programs for the 6809 micro-
processor.

DREAM will produce machine code routines which can be called from BASIC

programs, using the USR function.

Loading the Package

Before loading DREAM from cassette you must first tell the Dragon to reserve some
memory for the package and its work areas. DREAM normaily resides just below the

BASIC ROM, and will use RAM just below itself to hold the text table and other
information. Space is reserved by using the CLEAR statement. A good starting point

2

might be:

CLEAR 200.20000

This will reserve 4992 bytes for DREAM (27776 to 32767) and 7775 bytes for it to use
(20001 to 27775) — sufficient for Assembler programs up to about 450 typical tength
lines, or about 230 full lines of text. About 18k still remains for a BASIC program. 200
bytes of string space. and four high resolution graphics pages. Appendix A shows a
sample memory map with DREAM installed

Now you can load DREAM As it is a machine code program. you must use the
CLOADM command Type:

CLOADM “DREAM ' and press ENTER

After about 30 seconds. the OK message should appear (If you havent reserved
memory, DREAM will not load correctly)

Now you can execute DREAM by typing:

EXEC

3

A title screen will appear. and the question

OLD TEXT?

DREAM ts asking whether you already have some text in memory which you want to
display As you havent answer no by typing.

N

A blank screen will appear with the cursor flashing in the top left hand corner You are
now ready to type in some text, or maybe your first program

It is suggested that you tirst get familar with the Editor by using it to manipulate some

general text

Using the Editor

All the keys on the Dragon keyboard will operate typomatically in DREAM Thats. tt
you keep a key depressed tor more than about a second, then it will repeat at the rate
of ten per second You will find this particularly handy for cursor positioning and
scrolling

DREAM can handle normal and inverse video characters While the cursor is moving,

4

its position is indicated by a reversal of background colour of the character under the
cursor Inverse video characters will be sent as lower case letters to an attached
printer. Lower case can be obtained by using SHIFT while upper case lock ts set. and
vice versa.

Type some words onto the top line You can use — and < to position the cursor
anywhere on the line. Ii you move the cursor over some typed characters you will
notice thal they are nol erased — you can correct any characters without re-typing the
rest of the line Nor do you need to pass the cursor over the resi of a line alter making
any changes.

The CLEAR key can be used to blank oul the rest of a line All characters under and to
the right of the cursor are erased — only the current line 1s allected

Pressing SHIFT and SPACE causes a skip to the next TAB column These are
predetined to columns 8, 14, 23 and 31.

Inserting and Deleting Characters

To delete characters within a line. position the cursor on the lettmost unwanted
character and press shill and < together The line will ‘close up and spaces are

5

shifted into the nght hand end To insert characters. use shilt and > and a gap will
open up at the cursor position ready for you to type the missing characters A word of
warning. any characlers shilted off the end of the line are lost

When the cursor reaches column 32 it will not move as further characters are typed
You need to press ENTER to get onto the next line to continue typing Pressing
ENTER also causes DREAM to accept the last line and Store it in its text table in
memory — this 1s true of any command thal moves the cursor onto a different line

Scrolling

Type something onto each line of the screen — using ENTER to access subsequent
lines When you reach the toot of the screen keep entering lines and the whole display
will scroll up each time you press ENTER

Press the up arrow and keep tt pressed to go into typomatic mode When the cursor
reaches the top of the screen the display will scroll back again until the first line you

entered is again displayed Using the four arrow keys you can position the cursor
anywhere within the text ready to overtype. insert or delete characters at that position.

6

A faster way of scrolling is to press SHIFT and | or SHIFT and t These cause the
display to scroll by 8 lines (halt a screen) at a time Whenever possible the cursor 's
kept on the same logical line

The Editor Commands

So far we have discussed cursor positioning, scrolling. and general text editing
DREAM also has a wide range of ‘commands which are accessed by typing the
BREAK key followed by a letter indicating the required action As soon as you press
BREAK the current line ts erased and an inverse oblique appears in column 1 to show
thal you are in command mode The cursor ts posit'oned in column 2 ready for you to
type in the command The data from the current line is not lost — it will be re-instated
when the command has been completed Commands are not executed unt! either

ENTER or an up or down arrow key is pressed Appendix B lists all the Editor
commands.

The HOME command displays the first 16 lines, putting the cursor at the start of line 1
The END command shows the last 8 lines with the cursor on the last line positioned
half way down the screen With the cursor sitting anywhere within the text table. type
BREAK followed by the letter H (for HOME) or E (for END) Press ENTER and the
command is obeyed instantly.

The QUIT command exits from DREAM back to BASIC Type BREAK then Q and

ENTER You can then re-enter OREAM by typing EXEC and reply Y to the OLD
TEXT? prompt to re-display the text in memory, or reply N to erase the lable ready lor

something new

Inserting Lines

The method of inserting new lines 1s to first add a block of blank lines at the required

point, and then to type the new data onto those blank lines. Position the cursor

anywhere on the line prior lo which the new lines are to appear, and type BREAK |

lollowed by a number indicating the number of lines to insert. If you don't specify a

number then 1 line will be inserted Any aumber of lines can be inserted up to a

practical limit of about 6000 depending on the amount of memory you have reserved

for DREAM Press ENTER and the requested number of blank lines will be inserted,

leaving the cursor al the start of the first new line, ready for you lo type in the new data

The line over which you typed the insert command !s re-instated to its original data

content

If you attempt to insert more lines than will fit in the workspace, DREAM will insert as
many lines as it can, and will then clear the screen and show the message FULL.
Press any key to see the text table as it stands. You will now need to delete one or

8

more lines before making any further changes

Blank lines only occupy 4 bytes each in the text table As you fill them with data so they
grow in length up to 35 bytes for a full line Hence the FULL message may appear any
lime an extended line is accepted You can always exit from OREAM (QUIT
command), reserve more memory (via CLEAR), and re-enter DREAM with OLD TEXT
7? equals Y.

Line Deletion

To delete lines, position the cursor on the first line to delete. and type BREAK Dn
where ‘n’ is ihe number of lines to be deleted Omit ‘n to delete just one line n canbe
any number up to about 65000 but DREAM will never delete the last line of the text
table. You can use this fact to keep your own ‘end ol file: marker on the last line if you
like.

Lines can also be deleted by first using the MARK and END-MARK commands (cf) to
mark a block of lines, then type BREAK OM to delete the block

Whenever a line is deleted, or when a line is replaced by a shorter line. DREAM always
compresses the text table to drop the redundant matenal Hence the text table always

9

occupies as little valuable memory space as possible. Deleting a lot of lines can be
relatively slow as DREAM has a lot of housekeeping work to do. A flickering blob on

the command line shows that Dream is still at work.

String Searching

DREAM can be made to search the text table for any character string. Searching

always starts from the current line. To search the whole text table, !irst do a HOME

command.

The FIND command (BREAK F) will position the cursor on the first occurrence of a

string. with that line placed in the middle of the screen (if possible). If the string is not

found. the table is positioned at END. The command is entered on the first line to be

searched and has the form:

F/string/

Any non-blank character can be used to delimit the string e.g..

F°12 1/2% ©

10

Whatever character marks the start of the string must also mark the end.

The CHANGE command will search for one or all occurrences of a string. replacing it

by a second string. e.g..

C/string 1/string2/ for one occurrence
C/string1/string2/A for all occurrences

The replacement string can be longer or shorter than the searched string. To remove a

string completely, string2 can be a ‘null’ string. e.g..

C/deletable//

If a new string is longer, take care, as it may cause characters to be shifted off the right
end of a line are lost.

Repeating a FIND or CHANGE

Pressing SHIFT and @ together will repeat the last FIND or CHANGE command.
starting at the next line. For example, to find all occurrences of a string, use F/string/
first, then type SHIFT @ repeatedly to find all subsequent occurrences.

11

Marking a Block of Lines

Any number of continuous lines in the text table can be ‘marked for later use by the

REPLICATE, DELETE, PRINT or SAVE commands First locate the first line of the

block to be marked, and type BREAK M (for MARK) on it and press ENTER Next
locate the last line of the block and type BREAK N (for END-MARK) and press ENTER

The first and last of the marked lines are flagged by a block graphic replacing the right-
most character

Once ‘marked a block stays marked until cleared by the UN-MARK command
(BREAK WU), or until another block is marked. or until any DELETE or INSERT
command Is executed

Duplicating Lines

A marked block of lines can be copied into another part of the text table by using the

REPLICATE command (BREAK R). First mark the lines using MARK and END-MARK.,
then place the cursor on the line in front of which the duplicated lines are be inserted
and type BREAK R (for REPLICATE).

12

On pressing ENTER the lines are copied They have not been deleted trom their
original position—they now exist twice tn the text table You can delete them trom the
old place by the DM command if required

Don't try to copy lines into a position between the MARK and ENOD-MARK Iines You
will not get a meaningful result

Cassette Input—Output

Having created a valuable table of text using OREAM you will want to be able to save it
on tape and recall it at a later dale This can be done by using the SAVE and LOAD
commands. To save the complete text table. position the cursor at HOME and enter
the command:

S filename

Only one space must exist between the S and the tilename, which 1s not enclosed in
quotes. Only the first 8 bytes of ‘lilename are significant

Set the cassette machine ready to record and press ENTER As each line 1s recorded
the display scrolls up So you can monitor the progress

13

You can save a selected number of lines only. by adding a parameter to the SAVE
command e.g.,

$25 filename

This will create a named text file on cassette consisting of 25 lines starting with the line
on which you typed the command. Just one space must follow the number, which must
immediately follow the S

A ‘marked’ block of lines can be saved by typing:

SM filename

This will create a tape file consisting of all lines between those marked by the MARK
and END-MARK commands inclusive.

Loading from Cassette

To load a DREAM text file from tape, enter the command:

L filename

14

observing the syntax rules specified tor the SAVE command Only the number of
characters you give for ‘filename will be used to match files on tape eg.

LP

will match any file whose name starts with the letter P

As the tape is read, the names of all fle headers encountered will be shown on the
command tine. When a file name that matches the LOAD command 1s found. a flashing
white blob at the right end of the command line indicates that loading 1s proceeding

Each line ts individually parity checked as it is read. If any errors occur an inverse E
will appear to the left of the flashing blob Loading proceeds. and the error line 1s
replaced by '???. This avoids the trretrievable loss of a file should one line get
corrupted. Often you can re-construct a line by examining the previous and following
lines.

Merging Text Files

The LOAD command can be used to insert a DREAM file from tape into an existing text
table in memory. Thus you can save a block of lines from one text table. load

15

another text file, And insert the saved lines at any point. Do this by entering the |.OAD

command on the line prior to which insertion ts required.

Printing

The whole text table. or a selected number of lines, can be sent to a printer. Position

Ihe cursor on the first line to be printed and enter the command:

P to print all following lines or
Pn to print the next ‘n lines or

PM to print a ‘marked block of lines
If you try this command without a printer connected, the Dragon will ‘hang'and you will

have to press the ‘RESET button to recover This will take you back into BASIC.

You can pause the printer at the end of a line by pressing BREAK. Restart by typing
‘P) Typing ‘O' will terminate printing.

The Dragon allows you some control over the control bytes which are sent to the printer at the

end of each line Location 330 (decimal) is a count of the number of bytes to be sent.
Locations 331 onwards contain the required control bytes When you switch on the Dragon,
location 330 is initialised to 1, and localions 331, 332 to the values for CR

16

(hex OD) and LF (hex OA) If your printer needs both a CR and LF then you should
POKE 2 into location 330 betore entering DREAM Other line termination sequences
can be obtained by doing the appropriate POKE s

Cancelling Command Mode

OREAM commands are not executed until you press ENTER or an up or down arrow
If you press a key after BREAK which does not correspond to a recognised command,
DREAM will reply with ‘?’ when you press ENTER If you decide you don't want to
execute any command, type BREAK again and the data line will re-appear and
command mode is cancelled

The sequence BREAK, BREAK ts in fact a valid quick way of returning the cursor to
column one.

The Recover Command

The RECOVER command (BREAK V) will enable you to recover trom a typing slip For
example, if you inadvertently hit the CLEAR key while editing a line. and cant
remember what you have lost, enter BREAK V and the line will re-appear as it was
before you started editing it This will only work if you have the presence of mind not to
move the cursor off the current line before using RECOVER

17

Executing the Assembler

The ASSEMBLE command (BREAK A) will transfer control to the Assembler part of
DREAM Belore using this command you will need lo read the instructions on how to
prepare Assembler source statements, and, if you are new to the 6809. the section on

6809 programming The Assembler uses the source code you have prepared in the
text lable, and produces the corresponding machine ‘object code. storing it directly in

memory, from where it can be directly executed

Tabbing

When typing Assembler source programs, it is sometimes desirable, though not

necessary, to divide the statements into fixed fields on the screen for neatness and

readability. Tab positions have been pre-defined in DREAM at columns 1, 8. 14, 23

and 31, giving convenient positions for Label, Op-code. Operand, and comments

Pressing SHIFT and the Space-bar together causes the cursor to skip to the next Tab

position

Restoring Text Mode

This final Editor command ts described here for completeness, though its significance

18

will be more apparent after you have used the Assembler and executed machine code

BREAK T re-initialises the Dragon to text mode. and is necessary when returning to
the Editor from a machine code program that has left the Dragon in grap!.cs mode

6809 PROGRAMMING

With its several 2-byte registers, the 6809 can operate internally as a 16-bit processor
for many operations The registers are -

A Accumulator B Accumulator

 D

X; Index Register

Y;: Index Register

U: Stack Pointer / Index Register

19

S:; Stack Pointer / Index Register

 PC Program Counter

| EFHINZVC | CC Condition Code Reg

Direct Page Register

A and B are 8-bit general purpose accumulators used for arithmetic and logical
operations. They can also be considered together as the 16-bit D accumulator for
certain instructions.

X and Y are 16-bit index registers, each used in a large number of indexed mode and
other instructions.

U and S are stack pointers, S being inherently used by the 6809 for subroutines and
interrupts. Both U and S share the same indexed mode addressing capabilities as X
and Y

The program counter is a 16-bit pointer to the next instruction to be executed It can be
used in Program Counter Relative addressing not just by branch instructions, but

20

wherever indexed mode addressing ts allowed. This enables the painless implement-
ation of position independent object code.

The condition code Register holds 8 flags which represent the state of the processor
and the results of previous instructions. The flags are:

B7 E Entire Flag Used by the ATI instruction
B6 F FIRQ Mask Prevents FIRQ Interrupts
BS H Half-Carry Used by the DAA instruction
B411IRQ Mask Prevents IRQ Interrupts
B3 N Sign Flag Set on negative result
B2 Z Zero Flag = Set on Zero result
B1V Overflow Seton 2's complement overflow
BO C Carry Set on an un-signed overflow

and by shift type operations

The 6800 and 6502 microprocessors have a fast, economical Direct Page addressing
mode in which a constant zero is used as the top 8-bits of the address. The 6809

extends this concept by using the current contents of the DP register to form the top 8-
bits. Hence Direct Page Addressing can be used to access any chosen 256 byte page
of memory.

21

6809 ADDRESSING MODES

Inherent e.g.. MUL

No operand field is coded as the operand is implied by the instruction.

Accumulator eg. CLRA
RORB

Accumulator addressing !s used by instructions that operate on a chosen accumulator

only, with no reterence to memory. No operand field is allowed.

Immediate eg. LDA #1
CMPX #$7FFF

Put a hash symbol in front of the operand to specify immediate addressing, implying
that it is to be used as a value rather than an address. The first example will load the
value 1 into A, not the contents of memory location 1.

Extended eg. LOX >LABEL

22

For extended addressing, DREAM generates pairs of bytes (High. Low) to fully specify

a 16-bit memory address. The ‘>’ symbol is only necessary when it is required to over-

ride conditions that would cause Direct addressing to be used.

Direct eg. STA FIELD
INC <COUNT

Direct addressing produces 1 address byte which forms the low order 8-bits of the
memory address The high order 8-bits are supplied by the Direct Page Register
DREAM will use Direct mode when the operated address 1s computed to be within the
page equal to the current SETOP setting (initially zero) The optional <<’ symbol! wilt
lorce Direct mode for this one instruction.

Extended indirect eg. JSR (RADD)

In this mode, the operand is the address of a 16-bil value in memory, which will be

used to point to the operand.

Register eg. FR A,OP
PULS D,PC

23

Register addressing relers to the selection of the various 6809 Registers

Indexed

Indexed addressing mode has several options. DREAM will create the correctly coded

‘post-byle’ following the op-code. for each option.

a) Zero Offset eg. LDA Xx

This, the fastest indexing mode, uses the specified X, Y. S or U register to point directly

to the operand in memory

b) Post Increment eg. CLR .Y+
LOD .U++

The specified indexing register is incremented by 1 or 2 after addressing the operand
in memory. No olfset is permitted.

Cc) Pre Decrement eg. CMPA .-x

STB. --Y

24

The indexing register is decremented by 1 or 2 before being used to address memory
No offset is permitted.

d) Constant Offset eg. NEG 1.X
ASL -SMALL.Y

STX BIG.U

In this mode a signed offset and the contents of the indexing regrster are added to form
the effective operand address. The register contents are not changed The offset is a
signed 5, 8 or 16-bit value. The assembler will usually create the optmum size of
offset.

e) Accumulator Offset eg. CMPX AU
LEAY D.X

A signed value in the A, B or D accumulator ts used as the ottset Thus the offset can
be calculated at run time.

f) Indexed Indirect eg. STD (.Y++)
ADDB (4,S)

25

All the indexing modes excepling auto increment / decrement by 1, may have an
additional level of indirection specified The indexing mode ts calculated first, and the
2-bytes al the memory thus addressed are used as the effective address of the
operand

Relative Addressing (Branching)

The byte(s) following any branch instruction op-code are treated as a signed two's
complement offset which is added to the Program Counter to obtain the address of the
next instruction Offsets can be 1-byte (short) or 2-bytes (long). The assembler
computes the offset — the programmer only has to code the memory address

(explicitly or symbolically), and request a short or long offset by selection of the op-

code mnemonic

e.g. BRA HERE (short)
LBEQ THERE (long)

Program Counter Relative e.g., LEAY LABEL,PCR

The Program Counter can be used as a pointer register with an 8 or 16-bit signed
offset. This addressing mode allows machine code programs to be produced which
can execute without alteration, anywhere in memory. DREAM will select the optimum
offset size, or it can be specified by the programmer

26

A level ot indirection can be appplied additionally

e.g..ADDD (POINT.PCR)

Writing Assembler Source Code

Using DREAM, you can code one Assembler source statement per tine These state-
ments consist of four tields — label, op-code. operand and comments The op-code

field is mandatory, label and comments are optional. an operand 1s required by some

op-codes. The fields are separated by one or more spaces

e.g., LOOP LDA DATA . comment Instruction with a label
BEQ LOOP . comment Instruction with no label
RTS . comment Instruction with op-code only

When present, the label field must start in column 1 and have a maximum length of 6
characters. All characters in the label are significant and are used when matching
labels coded in operand fields. Labels must only consist of alphabetic and numeric
characters, and must start with an alphabetic There is one exception: one label can
start with the @ sign and is used to tell DREAM the first statement to execute when you

27

come to run the resultant machine code program. It is advisable not to use the single
letters A, B, D, X. Y. Uor S nor CC, OP or PC as labels as these are normally used to
refer to the internal registers of the 6809.

Examples of valid labels

TAG
@START
PARTS

Examples of invalid labels

3RD must not start with a numeric
SECTION too long
IN-OUT must not contain any special characters

The Op-code Field

At least one space must separate the label from the op-code field. If no label is
present, then there must be a space in column 1. The op-code field can contain any of
the standard Motorola mnemonics for 6809 instructions or Assembler directives as

listed in Appendix C

28

The Operand Field

One space or more must separate the op-code field from the operand Not all

Assembler statements require an operand, but when present it is used to represent an

address or a constant or one or more registers on which the instruction will operate

Within the operand field, hexadecimal numbers are preceded by a dollar sign (S$)
Numbers not preceded by $ are assumed to be decimal

An address operand, or an offset for indexed addressing, can be specified as a
decimal or hexadecimal value, or as a symbolic label which must be defined in the
label field of one source statement.

Examples

LDA $1234 Absolute hex, address
LDA 1@24 Absolute decimal address
LDA DATA Symbolic address
LDA LEN,X Symbolic offset
LDA 5,X Absolute offset

An asterisk in the operand field implies the value of the Assembler's program counter

at the start of the current statement.

29

Labels and absolute values can be combined using ‘+' and ‘-’. DREAM will do the
necessary arithmetic at assembly time.

Examples

LEAY TAG+5,PCR
LDA END-START +$2C
BRA *+8

Immediate addressing mode is signified by the hash sign (#).

LDA #'+ immediate character

LDB #$2F immediate hex

CMPA #123 immediate decimal

LDX #TAG immediate symbolic

Controlling the size of Offsets

In the absence of any ‘<' or ‘>’ symbol, DREAM always selects the optimum offset size
for absolute offsets for indexed instructions. With symbolic offsets, DREAM can select
the optimum size, but may have to execute several extra assembly passes to fully
resolve the program. You can avoid this by telling DREAM the offset size to use. The

30

symbol ‘<' selects an 8-bit offset. and ‘>’ selects a 16-bit offset You cannot requesi a
5-bit symbolic offset.

DREAM will flag an error if an 8-bit offset is requested where a 16-bit is necessary

Examples

LDA
LDA
LDA
JMP
LDA

Registers

OFFSET,X
<OFFSET,X
>OFFSET,X
(<TABLE,PCR)
>1.X

size selected by Assembler
8-bit offset requested

16-bit offset requested

note the sequence (then <

force a long offset

Standard Motorola mnemonics are accepted for specifying registers. eg .

PSHS
PULU
TFR
LEAX
LOB

D,xX
CC,Y,PC
A,OP
B.S
JU

31

The Comments Field

Two or more spaces and a semi-colon should precede the optional comments field,
which is completely free-form

ASSEMBLER DIRECTIVES

FCB/FCC

FCB and FCC are used to format data bytes. The data can be specified as decimal,

hexadecimal, character or symbolic.

DREAM recognises both the FCC and FCB recommended Motorola directives,
however they are handled identically. This gives the advantage of allowing decimal or
hex, bytes to be coded together with character strings in the operand field.

Either an oblique or a quote can be used to bound character strings — the same

symbol must occur both ends.

A comma is used to separate sub-operands.

32

Examples of FCB (FCC)

FCB $1F 1 hex byte
FCB 123 1 decimal byte
FCB 5A 1 signed decimal byte followed by one character byte
FCC /TEXT/.A Acharacter string terminated by a null
FCB VALUE The symbol must be defined elsewhere

When the value assigned to a byte exceeds 256, the low order byte value only is used
e.g.

FCB TAG

will generate the displacement of TAG within its page

The FOB Directive

FOB will format 16-bit values occupying 2 bytes each. Character values are preceded
by a single quote. Commas separate sub-operands. Each sub-operand generates 2

bytes.

33

Examples

FOB * star and space
FOB $1 gives hex 0001
FOB LABEL gives 16-bit address
FOB 1,23 gives 3 consecutive 16-bil fields

The RMB Directive

RMB ts used to ‘reserve memory bytes’ containing no specific value. The Assembler's
program counter is moved on by the number of bytes specified. If the operand of the
RMB includes any symbolic relerence, DREAM may have to use more than two
passes to generate the object program.

Examples

RMB 5 reserve 5 bytes
RMB LENGTH skip the number of bytes which LENGTH ts resolved as.
RMB LABEL-«x the next statement will start at the memory location

specified by LABEL

The EQU Directive

Equate can be used Io assign a value to a symbolic label. The Assembler’s program

34

counter is not affected. If the operand includes a symbol not yet defined. OREAM will
execute more than 2 assembly passes.

Examples

TAG EQU 500 assign the value 522 to TAG
XYZ EQU TAG+S$66 XYZ will have the value 622 decimal
VAL EQU FLD VAL has the same value or address as FLD

The ORG Directive

ORG is used to set the Assembler’s program counter, and hence the logical origin for
the following generated code. DREAM initially assumes an ORG value equal to the
bottom of the work-space. The label field is optional.

Examples

ORG $5202 - setpc. to hex. 5O0®
NEW ORG *«+8 equivalent to RMB 8

The PUT Directive

PUT directs the object code from the Assembler to a specific area of RAM. OREAM

35

assumes an inifial PUT to the bottom of the work-space Normally PUT ts preceded by
an ORG. but they need not specify the same address if you are going to move the
object code before executing it. or if your program uses posilion independent code
throughout Do not code a label field.

Examples

PUT S6BE@
PUT *

The SETDP Directive

SETOP is used to tell the Assembler the current value of the Direct Page. The
Assembler will then generate Direct Page addressing mode where appropriate for all
following instructions where the operand is computed to be within the specified page
DREAM assumes an initial SETDP of zero. The operand should be a hex. value in the
range $@© to $FF

Example

SETOP $6A

36

ASSEMBLER OPERATION

The Assembler operates in a minimum of two passes of the source code If you have
written a good number of statements. you will notice a pause during pass 1 with just
the pass number displayed A symbol table 1s built during this pass. occupying memory
within the OREAM workspace, just below the text table This pass takes about 2
seconds per hundred source statements.

The second pass follows automatically, and the results are displayed on the screen
You can freeze the display by pressing BREAK DREAM will pause itself whenever an
error is found. Continue by typing A. Typing B will give a slower scroll (BROWSE
mode).

The display shows the following columns.-

1 The ORG‘ address of the object code in hexadecimal
2 Upto 5 bytes of object code in hexadecimal

OR an error message
3 The original source code. This column is continued on the next line

if necessary.

37

Error Messages

When DREAM detects a source code error, it displays ERROR in inverse video tn the
object code column, followed by a letter indicating the type of error The codes are
listed in Table 1 in Appendix D

If you specily a PUT directive that attempts to load the object code into ROM memory,
the message ROM? Is displayed in the object code field.

If the object code attempts to overlay DREAM, or the text table or symbol table. the
screen is cleared and the message FULL displayed. Pressing any key will return
control to the Editor. Modify the PUT statement (if any) or QUIT from OREAM, allocate
more workspace and re-enter DREAM to try again.

The Assembler process normally completes at the end of pass 2, but if you have coded
a program involving complex resolving of symbolic labels, then OREAM will automatic-
ally go into a third or even four or more passes. If the program cannot be resolved in 8
passes, Assembly terminates with the message ‘UR’ (un-resolvable). Go back to the
Editor and supply more control over offset lengths, or remove forward referencing
labels from the operand field of such statements as RMB or EQU In general a ‘UR’

error is indicative of confused programming.

38

Assembler Keyboard Commands

At the end of the last pass, the total number of errors is shown, and OREAM waits fora
command. Table 2 in Appendix D lists all the Assembler keyboard commands To gwve
a command, type BREAK followed by the letter and then press ENTER If you type a
command wrongly, type BREAK again and re-enter it

You can display any number of further passes by BREAK A or B Passes occur tn
cycles on eight, with the first of each cycle being a non-display pass

BREAK P will output the results to a printer as well. At the end of a line, typing BREAK
will pause the printer and display Type P to continue printing A or B will continue
without print

Unless you are experienced in Assembler programming, OREAM will probably have
lagged some errors in your coding. When assembly ts finished, the command BREAK
Q will QUIT from the Assembler back to the Editor so you can correct your source
code. The cursor will be positioned on the last statement that you edited

Alternatively, while the Assembler is pausing during a display pass, e.g . when an error
is shown, you may decide to return directly to the Editor to correct that statement rather

39

than wait for the assembly to complete. Pressing Q at this stage will return control to
the Editor with the same block of text displayed that was on the Assembler screen

Once you have a clean Assembly, the resultant program can be tested The command
BREAK X will transfer contro! to your object program

BREAK G will enter the DEBUG package “DREAMBUG' if it ts installed DREAM tests
tor the existence of the DEBUG package tn memory and returns the message ‘NF if tt
can not be found. (DREAMBUG assists the testing of machine code programs by
providing breakpoint and memory examine and change facilities etc)

Testing the Object Program

If you have not coded any PUT statement. then DREAM will store the object code from
the Assembler starting at the bottom of the workspace. e.g., if you reserved space with

a statement CLEAR ssss,20000 then the first assembled instruction will start at
address 20001 decimal (hex. 421). Without an ORG statement, this will also be the
logical address of that instruction as displayed on the output from the Assembler

When you pass control to the object code by typing BREAK X at the end of assembly,
execution will start at the instruction that had a label starting with the @ symbol If there

40

is no such label, then execution will start al the address of the bottom of the workspace
(20001 etc.). On entry to your program the direct page register is set to zero OREAM
transfers control by issuing a JSR instruction. If your program ends with ATS then
control will be returned to the Editor (assuming successful execution)

DREAM automatically generates an RTS instruction at the end of your program.
provided your last source statement was an instruction and not an Assembler
Directive, but it is not a good idea to rely on this safety feature in your programs.

If your object program sets the Dragon into a graphics mode, then you may need to
type BREAK T ENTER when execution has completed, to re-establish text mode for
the Editor.

Object code generated by DREAM can also be executed wa the Dragon EXEC
command or USR function, if you leave DREAM and use the relevant BASIC state-
ments. e.g.,

EXEC 20001 or
DEFUSR = 20001 : A = USRO®()

41

SUPPLEMENTARY INFORMATION

Saving Object Code on Cassette

Object code can be saved on tape and re-loaded by using the CSAVEM and CLOADM
commands from BASIC as described in the DRAGON handbook The code can then
be used at a later date without DREAM being installed in memory.

Alternative Positioning of Object Code

You might wish to assemble a routine which you would prefer to have positioned at the
top of RAM (say starting at 30001 dec.) so it can be used with a very large BASIC
program. Assemble the code with an ORG of 30001 and save the output with

CSAVEM. Switch the Dragon off and on again to release DREAM'’s memory to BASIC.
Load the BASIC program and type CLEAR ssss,30000. Load the saved object code
using CLOADM with an appropriate offset so it will be positioned at 30001.

Accessing the Text Table

It can be useful to use the DREAM Editor to maintain files of data which can be read by
your own machine code programs. DREAM contains a routine which you can access
that will extract any line from the text table. An entry point to this routine exists at 2
bytes into DREAM 1.e. for OREAM at its default position of 27776, the entry point to the

42

extract routine ts at 27778 decimal (hex. $6C82).

To use the routine, load register X with the start adcress of a 32 byte area into which
the line 1s to be returned. Load register D with the line number required. (the first tine 1s
numbered zero). You must set up the direct page register to the top page of the work-
Space (normally hex. 6B). If D refers to a line outside the current text table range, then
a ‘plus’ condition is returned in the condition code register For a valid line. the
condition code will be set to ‘minus’

Relocating DREAM

DREAM has been written using position independent code throughout and hence can
reside anywhere within the memory map. It dynamically searches tor the first complete
page of RAM below itself and sets the direct page register to point fo it The work-
space starts there, working downwards. The bottom of the workspace is one higher
than the second number you gave on the CLEAR statement

DREAM has to be relocated lower in memory when being used with the Debug
package, which is available separately.

DREAM Entry Point

To enter DREAM after loading any other machine code program, type

EXEC 27776
or whatever address DREAM is loaded at.

43

APPENDIX A

Sample Memory Map with DREAM Installed.

Decimal Hex
Address Address

65535 SYSTEM & l'(O AREAS FFFF
65280 FFOO

65279 CARTRIOGE ROM MEMORY FEFF
49152 COOO

49151 BASIC INTERPRETER ROM BFFF
32768 8000

32767 DREAM 7FFF
27776 6C80

27775 Debug breakpoint table 6C7F
27648 6C00

44

27647 control fields 6BFF
DREAM 6800

text table 6AFF

WORK symbol! table

SPACE aN
20001 object code t 4E21

20000 BASIC STRING STORAGE 4E20
19800 4D58

SYSTEM STACK 4

BASIC PROGRAM STORAGE t

7679 GRAPHICS PAGES 1 TO 4 1OFF

1536 0600

45

1535 TEXT SCREEN MEMORY OSFF
1024 0400

1023 SYSTEM USE O3FF
0 0000

The map shows the typical usage of memory within the Dragon with DREAM installed,
assuming an initial CLEAR 200,20000 and assuming the default 4 high resolution
graphics pages. The arrows show the direction in which expandable areas will grow

46

APPENDIX B — EDITOR OPERATION

Cursor Positioning, Scrolling, and Editing

SHIFT —
SHIFT —
BREAK, BREAK
CLEAR
ENTER

I
|
SHIFT f
SHIFT |
SHIFT @
SHIFT SPACE

cursor right
cursor left
insert character

delete character
cursor to column 1
erase rest of current line

cursor to next line

cursor up
cursor down

scroll back

scroll forwards

repeat last FIND or CHANGE command

tab to pre-defined columns

47

COMMANDS

Type BREAK then the command

A

C/s1/s2/
C/s1/s2/A

D
Dn

DM

E
F/s/

H
|

In

L name
M

N
Pp

Pn

execute assembler

change stnng1 to string2
ditto — all occurrences

delete 1 line

delete n lines
delete marked block

end — display last 8 lines
find string1
home — display first 16 lines
insert 1 line

insert n lines
load OREAM file from tape
mark first line of a block
mark end line of a block

print rest of text file
print next n lines

48

PM

Q
R
S name
Sn name
SM name
T

U
V

print marked block

quit — return to BASIC
replicate marked block
save complete text table on tape
save next n lines

save marked block
re-establish text mode
un-mark marked block
recover line as before editing

49

m.b. = memory byte

APPENDIX C1 — INSTRUCTION OP-CODES
(Excluding Branch Instructions)

16-bit m.v. refers to the contents of 2 consecutive memory bytes

ABX
ADCA,ADCB
ADDA,ADDB
ADDD
ANDA,ANDB
ANDCC
ASL,ASLA,ASLB
ASR.ASRA,ASRB
BITA,BITB
CLR,CLRA,CLRB
CMPA,CMPB
CMPD
CMPS,CMPU
CMPX.CMPY

Unsigned add of B to X
Add 1 m.b. plus carry flag to A or B
Add 1 m.b. to A or B accumulator

Add 16-bit m.v. to D accumulator

Logical AND of 1 m.b. with A or B
Logical AND of immediate byte with CC
Arithmetic left shift of 1 m.b. or A or B

Arithmetic right shift of 1 m.b. or A or B
Set CC as for ANDA,ANDB but leave A or B unchanged

Clear 1 m.b. or A or B to zero

Compare A or B with 1 m.b.
Compare D with 16-bit m.v.
Compare stack pointer with memory

Compare index register with memory

50

COM,COMA,COMB
CWAI
DAA
DEC,DECA,DECB
EORA,EORB
EXG
INC,INCA,INCB
JMP
JSR
LDA,LDB
LOD
LOS,LDU
LOX,LDY
LEAS,LEAU
LEAX,LEAY
LSL,LSLA,LSLB

LSR.LSRA.LSRB
MUL
NEG,NEGA,NEGB
NOP
ORA.ORB

Invert all bits inam.b or AorB
AND immed. byte with CC and wait for interrupt
Decimal adjust A accum.

Decrement 1 m.b. or A or B by 1
Exclusive-OR A or B with 1 m.b.
Exchange contents of any 2 like-size regs.
Increment 1 m.b. or A or B by 1
Jump to effective address
Jump to subroutine
Load A or B from 1 m.b.
Load 16-bit m.v. into D
Load 2 m.b.'s into stack pointer
Load 2 m.b.'s into index register
Load effective address into stack pointer
Load effective address into index register
Logical left shift of 1 m.b. or Aor B

Logical right shiftof 1 mb orAorB

Unsigned multiply D = A times B
Negate 1 m.b. or AorB
Single byte no-operation
Logical OR of 1 m.b. with A or B

51

ORCC
PSHS,PSHU
PULS,PULU
ROL,ROLA,ROLB
ROR,RORA,RORB
RTI
RTS
SBCA,SBCB
SEX
STA,STB
STD
STS,STU
STX,STY
SUBA,SUBB
SUBD
SW1,SW12,SW13
SYNC
TFR
TST,TSTA,TSTB

Logical OR of immediate byte with CC
Push any subset or regs onto S or U stack
Pull any subset of regs from S or U stack
Rotate left 1 m.b. or A or B with carry
Rotate right 1 m.b. or A or B with carry
Return from Interrupt

Return from Subroutine
Subtract 1 m.b. and carry flag from A or B
Extend the sign bit of B throughout A
Store A or B into 1 m.b.
Store D into 2 m.b.'s
Store stack pointer in memory
Store index register in memory
Subtract 1 m.b. from A or B
Subtract 16-bit m.v. from D
Software interrupts
Synchronise with interrupt
Transfer contents of any register to any other of like size
Test the value of 1 m.b. or Aor B

52

APPENDIX C2 — BRANCH INSTRUCTIONS

Op-codes starting with L are ‘long’ branches producing a 16-bit signed offset

BCC,LBCC
BCS,LBCS
BEQ,LBEQ
BGE,LBGE
BGT,LBGT
BHI,LBHI
BHS,LBHS
BLE,LBLE
BLO,LBLO
BLS,LBLS
BLT,LBLT
BMI,LBMI
BNE,LBNE
BPL,LBPL
BRA,LBRA
BRN,LBRN
BSR,LBSA

Branch if carry clear
Branch if carry set
Branch if equal

Branch if greater or equal (signed)
Branch if greater (signed)
Branch if high (un-signed)
Branch if high or same (un-signed)
Branch if less or equal (signed)
Branch if lower (un-signed)
Branch if lower or same (un-signed)
Branch if less than (signed)

Branch if minus
Branch if not equal
Branch if plus
Branch always
Branch never (no-operation)
Branch to subroutine (un-conditional)

53

BVC,LBVC Branch if overflow clear

BVS,LBVS Branch if overflow set

APPENDIX C3 — ASSEMBLER DIRECTIVES

EQU Equate
FCB/FCC Format bytes and concatenated characters
FOB Format double bytes
ORG Set logical origin
PUT Set physical target address
RMB Reserve memory bytes
SETOP Declare Direct Page

APPENDIX D

TABLE 1 — Assembler Error Codes

8 bit offset requested where a 16 bit is required
Invalid register combination on EXG or TFR
Duplicate defined label
Short branch used where a long branch is required N

O
O
®

54

| Invalid indexing
L Invatid label field
O _ Invalid Op-code
R___Invalid register
S Syntax error in operand field
U —_ Undefined label found in operand
X Invalid constant

TABLE 2 — Assembler Keyboard Commands (Precede by BREAK)

Assemble again (a further pass)
Assemble at browse speed
Enter Debug package
Print assembled program
Quit — return to Editor
Execute object program x

O

V
U
G
M
D
>

55

NO TEXT

FULL

NF

UR

APPENDIX E

System Error Messages

Meaning

A reply of ‘Y' was given to OLD TEXT? on the title screen, but a valid
text table does not exist in RAM

Reply N to start a new text table.

The DREAM workspace is full, or the output from the Assembler is
attempting to overlay OREAM or its internal tables.

Press enter to return to the Editor, then delete some lines or correcl

any PUT/ORG statements.

Attempting to enter the Debug package but the Debug identification
pattern was not found in the expected position.

The Assembler has done 8 passes of the source code but has nol
been able to resolve the program.

56

ERROR X

ROM?

Return to the Editor and simplity the usage of forward symbouc
references. The problem can also be caused by coding a program that
attempts to generate different object code for the same area of
memory, by bad use of the ORG or PUT statements

The Assembler has found an error in the source program.

Look in Appendix D tor an explanation of X

The object code from the Assembler is attempting to overlay an area of
ROM.

Return to the Editor and correct the PUT or ORG statements.

57

4000
4000
4000
4000
4000
4000
4000
4000 8E0400
4003
4003
4003
4003 8641
4005
4005
4005
4005
4005
4005
4005 A780

APPENDIX F—SAMPLE PROGRAMS

*
* This program outputs the letter A
* to all positions of the screen
*
* Put the address of the start of VOU
* RAM into the X index register
*

LDX #$O40@D
*
* Put the letter A into the A register
*

LDA #a
*
* Store the contents of A into the
* memory byte indexed by X,
*xthen increment X by 1 to point to the
*xnext VDU byte
*
LOOP STA X+

58

4007
4007
4007
4007
4007 8CO600
400A 25F9
400C
400C
400C
400C
400C BD8006
400F 27FB
4011
4011
4011
4011 39
4012

4000
4000
4000

*

* Have we reached the end of the screen?
*—If not go back to LOOP
*

CMPX #$O6OOD
BLO LOOP

*

* All done—now wait for the key to be
*typed (JSR $8006 is like INKEYS)

*
WAIT JSR $8006 Any key typed?

BEQ WAIT —no (value is @)
*
*A key is pressed, return to DREAM
*

RTS
*

*

* That program executed too quickly to
*see what was happening—let’s slow

59

4000
4000
4000 8E0400
4003 8641
4005 A780
4007

4007
4007
4007
4007
4007 108E1388
400B 313F
400D 26FC
400F 8C0600
4012 25FI
4014 BD8006
4017 27FB
4019
4019 39
401A
4000

wit down a bit
*

LDX

LDA
LOOP STA
*
* Now load the value 5000 into Y and

#S$O40@
#A

xX+

* count down to zero between each ‘POKE

*to the screen

*

LDY
DELAY LEAY

BNE

CMPX
BLO

WAIT JSR

BEQ
*

RTS
*
*

60

#5000
-1.Y
DELAY

#3$@060O
LOOP
$8006

WAIT

decrement Y

repeat until zero

Any key typed?

—no (value is @)

4000
4000
4000
4000 8E0400
4003 8641

4005 A780
4007
4007
4007
4007

4007 4C
4008 815A
400A 22F7
400C
400C 108E03E8
4010 313F
4012 26FC
4014

4014 8CO600
4017 25EC
4019 BD8006

* Now lets oulput the alphabet
* repeatedly
*

LDX #$0400
RESET LDA #A
LOOP STA X+

*

* Now increment the A register and test
* when it exceeds the letter z
*

INCA uncrement A reg
CMPA #Z
BHI RESET go and reset toA

*

LDY #1000 (a bit faster)
DELAY LEAY -1.Y

BNE DELAY
*

CMPX #$0600
BLO LOOP

WAI JSR $8006

61

401C 27FB
401E
401E 39
401F

4000
4000
4000
4000
4000
4000
4000
4000 1A10
4002
4002 8E0400
4005 8641
4007 A780
4009
4009 4C
400A 815A
400C 22F7
400E

BEO
*

RTS
*

WAIT

®

* This version uses the Dragon's 50 hz

«clock to contro! the timing

* First, disable the interrupt so we can
*

xuse it

*

ORCC
*

LOX

RESET LDA

LOOP STA
*

INCA

CMPA

BHI

62

#$10 set the IRO mask bit

#$0400

vA

X+

#2
RESET

400E
400E
400E
400E
400E
400E 13
400F
400F
400F
400F
400F
400F F6EFFO02
4012
4012 8CO600
4015 25FO
4017 BD8006
401A 27FB
401C
401C 1CEF
401E 39
401F

* Now wait for the interrupt—as it
*xhas been masked, execution will
*# continue with the next instruction

w after SYNC
w

SYNC wait for IRQ
*

* Now clear the source of the interrupt

*—this is done by ‘reading one of
*the special 1/O locations

LOB SFFO2 Clear irpt source
*

CMPX # $0600
BLO LOOP

WAIT JSR $8006
BEQ WAIT

*

ANOCC #SEF Enable IRQ again

ATS
*

APPENDIX F — Cont'd
Sample Output from the Assembler

NB This is not a meaningful program — just a demonstration of using vanous

instructions and directives

4000 *
0200 ORG $200
0200 PUT $3800
0200 * The PUT statement directs the object
0200 *code to a specific area of RAM
0200 *PUT must always be preceded by an ORG
0200 * and can specify a different address
0200 x if position independent code is used
0200 *
0200 *
0200 * The labe! @ indicates the start
0200 * point for program execution
0200 *

0200 4F @ CLRA
0201 *

0201 * Immediate operands

0201 8BBOA ADDA #10 deamal

0203 108E1F2C LOY #$1F2C hex
0207 C167 CMPB #'9 character
0209 8E04BO LOX #BIG equated value
020C CEFB2E LOU #-1234 16 bet negatve
O20F & Indexing

O20F A784 STA x

0211 E6AO LOB Yt
0213 01AF81 STY X++

0216 6DC2 TST U
0218 EDE3 STD a)
021A 684C ASL 12,U 5 bit oftset
021C 6388EC COM <-SMALL.X 8 bit offset
021F 6FA90480 CLR >BiG,Y 16 bet
0223 6C86 INC A,X register offset

0225 6FAB CLR D,Y

0227 *PC relative
0227 308C2E LEAX <NEAR,PCR short
022A E38D0412 ADDD >FAR,PCR = tong

65

022E
022E A691
0230 6D9FC31B
0234 ADSD00E3
0238 309C20

023B
023B 3440
023D 3652
023F 35FF
0241 1F89
0243 131
0245
0245
0245 8603
0247 1F8B
0249

«Indirect modes

LDA (.X+ +) indexed

TST (ANAME) extended

JSR (>ANAME.PCR)PC relative

LEAX (<TAG,PCR)

*Push‘pull. exchange & transfer
PSHS U

PSHU A.X.S
PULS D.DP.CC.X.Y,U.PC
TFR A.B

EXG U.X
*

* Using Direct Page mode
LDA #$03
TFR A.OP
SETOP $03 tell the assembler

66

0249 D704 STB

024B 9E00 LOX
024D OF34 CLA
024F F9025B AOCB
0252 * Branch etc

0252 2004 BRA

0254 012603E8 LBNE
0258 BD8006 NEAR JSR
0258 *

025B
025B *

025B 0258 TAG FOB
0300 ORG
0300 PUT

0300 C350 VALUE FOB
0302 FDA8 NEG FDB
0304 96 STORE FCB
0305 WORK RMB
0311 5065746572 NAME FCC
0316 ODOA CRLF FCB
0318 1C2B09 MIX FCB

STORE
VALUE etc

<OTHER force direct mode

>TAG force extended mode

NEAR
FAR

$8006 absolute

* Examples of constants & field detines

NEAR
$0300
$3900
$0000 2 byte decimal
-600 negalive
150 1 byte decimal
12 reserve 12 bytes
/PETER’ character stnng
$D.$A hexadecimal bytes
$1C.'+'.9 hex. char, dec

67

031B 0311 ANAME FDB NAME address constant

031D *

031D *x examples of equated values
031D *
031D 800F CONOUT EQU $800F hex. address
031D 0310 END EQU WORK + 11
0310 000C LWORK EQU NAME- WORK
031D 04B0 BIG EQU 1200 decimal
031D 0014 SMALL EQU 20

031D 0640 FAR EQU NEAR + 1000
031D 1234 OTHER EQU $1234
031D *

© 1983 Dragon Data Limited/ M J Kerry 54581

68

WARRANTY STATEMENT

Dragon Data products sold by authorised dealers are offered under
the provisions of the Supply of Goods (Implied Terms) Act 1973. In
order to provide a satisfactory service to our customers, Dragon Data
Ltd. warrants the following:
|. All faulty components due to defective manufacture will be

replaced free of charge for a period of 12 months from the original
date of purchase.

I|. All labour and/or services will be provided free of charge to repair
your Dragon Data product which fails in its specified perform-
ance due to manufacturing defects for a period of 12 months from
original date of purchase.

NB (a) The guarantee is restricted to the original purchaser.
(b) Claims will not be accepted if any unauthorised modification

is made to the product or if the serial number or guarantee
labels have been removed or defaced.

(c) Dragon Data's liability is limited to the cost of repair or
replacement (at Dragon Data’s discretion) of the defective
product.

This warranty is offered as an extra benefit and does not affect
customers’ statutory rights.

