™)

)

CORES 64

EDITOR/ASSEMBILER
& MONITOR

MICRODEAL

OO-RESIDENT EDITOR/ASSEMBLER
STARTUP PROCEDURES

QORES-64 1s an M6809 processor machine language program on a Dragon
camputer formatted machine language tape. To load the program into the
computer type CLOADM and press ENTER. The screen should clear and the tape
should start to load. When the program is campletely loaded and no load
errors were detected CORES-64 will automatically start execution and will
select 64K 1if the extra memory is installed. When the initialization process
1s completed the program should display a message and then the READY prompt.
You are now in the Editor program and ready to begin editing or creating a new
text file. The system is now completely under the control of CORES-64 so
ion't expect it to respond to any of "BASICs" cammands. In order to return
control to "BASIC" CORES-64 must first be exited by the command "EXIT". Once
exited you cannot return to CORES-64.

(CORES-64 has the ability to load BASIC program tape files provided they
were saved in an ASCII format. BASIC can save program files in this manner,
but it normally saves them in a binary form. In order to cause the file to be
In a compatible format with the editor you should add an "A" to the end of the
normal BASIC CSAVE cammand. CSAVE "PROGRAM" ,A (enter). This would tell BASIC
to save a file with the name "PROGRAM" in an ascii format. When reloading the
file, BASIC automatically can tell what type of file it is and load it
accordingly. All files created by CORES-64 and saved to tape are in an ASCII
format which is campatible with the BASIC file format. In order to try this
out and may be to become more familiar with the editor, load the demonstration
program "DEMO$" which is on the CORES-64 tape immediately after CORES-64. To
load the file just type "TLOAD" (enter) and the file will load automatically.
when the READY prompt appears the file is in the text buffer and ready for you

to edit. Try several of the commands in the editor in order to become familiar
with it's commands.

A great deal of time and effort has gone into the making of CORES-64. In
spite of this it 1s possible that this software may contain some bugs. If you
should encounter a problem please let us know about it in writing with
sufficient information to recreate the problem. A solution will be sent to
all purchasers of this program if a reasonable solution can be found.

Microdeal do not guarantee this software in any way and will not be liable
for any damage resulting from its use. CORES-64 and OCOMD+9 are trademarks of
Cer-Comp. x

COMMAND

IRDEX

Assembler Cossands

ASSEMBLER information 9 BQU (expression) 1"
ASSEMBLFR Register specifications 9 NAM (file name L camment 11
ASSEMBLER Directives 10 SPC <(value) "
ORG «(expression, value) 10 PAGE 12
END (execution address) 11 AH (name & comment) 12
RB (expression, value> 11 OPT <M,0,L,G,S,P,> 12
FCB <value, value, etc) 11 ASSEMBLER Error Messages 12
FIB (value, value, etc) 11 ASSEMBLER Pass options 1
FOC <(delim/text/delim) n ASSEMBLER Differences 15

Text Editor Commands

AEDIT (line #] .
P hhfml#&f: Tineth (Linedh
beLETe (1inedt]}- (Linef]

LEDIT [lined]

LFEED

LIST (1ined)- (1ine#]

LLNGTH (value)

MOVE (line# thru line#) (linef)
NEW

NLINES (command)

PRINTER (cammand

RESEQUENCE [sm:.f (1st Lline}]
RLINES

RPLACE (line 4 thru line#) \old\new\
RUN

SEARCH (line #thru linef \text\
SIZE

SKIP [file name]

TAPPEND [file name]

TLOAD [file name

TSAVE [file name

INSTRUCTIONS TEXT

Exit editor to Assembler
Autcmatic line Editing
Autamatic line$Ftype
Copy text lines

Delete text lines

Exit to Basic

Insert lines numbers in text file

Simgle Line Edit

Qutput line feeds to printer
List text lines

Input buffer Line Length
Move text lines

Clear text buffer

No linedfs display

Printer output on
Resequence line #s

Remove line #s

Replace text

Execute assembled program
Search for text

Display available memory Size
Skip over/verify tape file

Append Tape file

Load Tape file into huffer
Save text buffer to tape file

EDITOR

DEFINITIONS

.\.

VUM NIPDDad RN BEWODADAEYNLNR®

- is the character displayed when the SHIFT & "@" keys are depressec

as a delimiter for the "SEARCH" & "REPLACE" commands. Also see editor

command Summary.

= 6 b - items enclosed within these characters are required by that command
to perform correctly.

1" - items enlosed within these characters are considered as optional,
when used they must be in the required ocrder.

. - items enclosed within these characters are comments

Enter is used to

completion of a line entry.

-

- *Dash

13 used as a delimiter between line numbers

- Left arrow !s recognised as a Backspace

denote "ENTER" character and is used to signify the

“BREAK"

Arry ke
upon entry of any key but "BREAK®.

- 13 used for Break control at any time to returri to "READY"

can be used to stop the present cutput and it will be resumed
All cammands can be abbreviated by usirg

the first two characters of the command followed by its normal parameters.

2.,

LINE ENTRY:
Enter a line number, followed by a space and text ending with
"Enter”. Line Entry in the editor 1s identical to the format that
dasic uses for program lines, only line numbers can be a maximum of 4
digits long.

The line buffer is preset to 80 characters and the cursor will not
advance past the last character position, nor willit backspace beyond
the first character position. Line length may be changed by the LL
cammand. Fifteen characters before the end of line a medium tone
beep will be heard and a higher tone beep will be heard at the end of
line, if you need to continue to complete a word hit the "Clear” key
for margin release. Every key you hit after that will produce a
medium tone beep until you hit the enter key or reach the maximum
line length of 255 at which time the BEOL beep will be heard. Any
time during line entry if an invalid control character key is entered
a double low tone beep will be heard.

Entry of a line number over four digits will result in only the last
four digits being accepted.

Entry of a line number followed by "ENTER" will delete the line
previously entered using that line number the same as Basic does with
program lines.

Entry of a new line using a previously entered line number will cause
that line to be replaced with the new line, the same as Basic does

when changing a program line.

Entry of a line with a line number between two previously entered
line numbers will insert the new line between them. Once again this
1S identical to the way Basic inserts lines in a'program.

LIST [line number] (=) [line number]

Entry without line numbers will list the entire file. Entry
with a single line number will list only that line. Entry of two
line numbers will list from the first line number to the second one.
This is very similar to the "Basic" list function

Example: LIST 100-300 {Enter)

NLINES (OOMMAND LINE)
Causes line number printing to be supressed until command

following. This can be useful for printer listings where line
numbers are not wanted as in letters. It can be used with almost all
cammands.

Example: NLINES LIST 100-300 <Enter>

RESEQUENCE [1 digit increment] [starting linef]
Causes the file to be renumbered, if no increment is. specified

a value of 10 is used. If no starting line 3} specified, line3 000C
plus the increment value is used.

Example: RESEQUENCE 5 100

Resequence the line numbers in the file begin with '100' and
increment each line number by 'S5'.

DELETE <{begin linef)-¢end linetd
The delete function allows large segments of the text buffer to
be removed without having to enter each line number to be deleted.
If no line specifications are entered the user will be prompted as to
whether the entire contents of the buffer are to be deleted, this is
mainly to prevent the accidental deletion of the text buffer
contents.

Example: DELETE 100-199 (Enter®

Remove all the lines in the text buffer between and includirg
line 100 thru 199.

RLINES (Enter)

Remove all line numbers from the text buffer. This functiocn
will shorten the file by a substantial amount (5 characters per line:
and make the file compatible with other editors & programs. It will
save a substantial amount of space when the file is saved on tape ard
can be processed by the assembler in this form. However line numbers
must be re-inserted by the ILINES command before any editing can be
performed on the text buffer.

ILINES (Enter)

Insert line numbers on each line of text in the buffer. This
will replace the line numbers previously removed by the 'RLINES'
camand or insert line #Fs in files previously created by other
editors. This command will place four digits and a space on the
front of each line in the highest available sequence.

LINGTH (value)d
The input buffer line length normally allows line lengths up to
128 characters to be entered by default. The LLngth command allows
this value to be changed to any value fram 1-255. If you are working
with an 80 colum printer for instance ‘and doing text or letter
writing it can be more convenient to limit the line length to the
same length as the output device.

Example: LINGTH 80 {Enter)

TLOAD (file name) (Enter)

This is the tape file locad caomand and is used to load "ASCII"
formatted "BASIC" files or files previously saved by the editor. The
file name can be omitted and if so it will attempt to load the next
file on the tape. If an error should occur or an attempt to load an

invalid file type an error message will be displayed and the load
aborted.

Example: TLOAD TEXT1 (Enter)

TSAVE (file name) (Enter>
The TSAVE cammand 1s used to save the contents of the current
text buffer in an "ASCII" formatted tape file. Here again the file
name can be omitted but is recomended for ease of file
identification. The output file is fully compatible with the "BASIC"
tape format and can be reloaded with the BASIC "CLOAD" command.

Example: TSAVE TEXT1 (Enter)

«TAPPEND (file name) Enter)
The APPEND command allows a tape file to be appended to the end
of the current text file i1n memory. The file name can be omitted and
1f so it will attempt to load the next file in the tape.

Example: TAPEND TEXT2 (Enter)

SKIP (file name)

This command will allow the editor to search for and skip over
tape files much the same as BASIC does. If an error is encountered
while reading a file, an error message wil be displayed and the tape
stopped. This can be useful for checking tape files as well as
positioning tape for file additions. If no file name is used it will
simply skip the next file on the tape.

Example: SKIP DEMOS <Enter)

This would tell the editor to skip the file DEMOS

SEARCH (line#] (=) [line$] \ [string]\
Searches for all occurrences of the string between the delimiters
(Shift @) and the lines containing it will be output. If the
optional start & stop line is omitted the search wjll begin at the
beginning of the file to the end of the file. If only the start linedf
is specified it will search to the end of file.

Example: SEARCH 100-199\TEST \

List all the lines containing the string "TEST" between lines
100 thru 199.

RPLACE [line$f] (-) [line#] \ [string] \ [string]\
This function will replace all occurrences of the first striry
between delimiters with the second string. If the optional line# ‘s
are not specified the entire file will be used, if only the starting
line 3 is specified only from there to the end of file will be used,

and if both start and end line3:'s are specified only the lines
including them will be used.

Example: RPLACE 100-999 \ TEST\TESTER\

This would tell the editor to replace all occurrences of “TES™
between lines 100 and 999 with "TESTER"

LEDIT [lined}]

Causes the line number specified to be displayed and the cursor
to be positioned under the first character of the line. The EDIT mode
is then entered, see edit functions under "AEDIT".

Example: LEDIT 110 {Entet>

Edit line number 100 using the edit functions.

REDIT [lined)
Causes the automatic edit mode to be entered, if the startirx
line # is specified the edit function will continue from that line
until the end or a cancel edit operation character is entered. A!l
the edit camands are the same as LEDIT (line edit). If no change is
required on a line,enter a LF and the next line will be brought up
for editing. If the line is to be deleted just enter Shift "@"

Example: AEDIT 100 <{Enter)

Begin autamatic line editing starting at line 100.
EDIT FUNCTION KEYS

FUNCTION DEPRESS
MOVE CURSOR RIGHT Right arrow key
MOVE CURSOR RIGHT 1 WORD Clear key
MOVE CURSOR LEFT (backspace) Left Arrow key
INSERT SPACE Shift & Up arrow keys
DELETE CHARACTER Shift & Down arrow keys
MOVE CURSOR TO END OF LINE Shift & Right arrow keys
MOVE CURSOR TO BEGIN OF LINE Shift & Left arrow keys
GOTO NEXT SEQUENTIAL LINE Down arrow key
GOTO PREVIOUS LINE Up arrow key
END LINE AT CURSOR POSITION Shift & @ keys
REPLACE OLD LINE WITH NEW Enter key
EXIT FROM EDIT MODE Break key

-6-

QOPY (from linef)-(to linel) (new location line)

The copy function allows portion of the current text buffer to
be copled to another portion of the file. The lines included in the
specifications 'fram'and 'to' are copied to the new location line
following the destination line. The portion of the file copied is
left intact and the file is resequenced upon completion of the copy.
Be aware of this if you are editing a BASIC program file because the
line numbers will change and all @T0's, GOSUB's, etc line numbers
will be left intact.

Example: COPY 1100-1345 100

This would place a copy of the lines fram 1100 thru 1345
following line 100.

MWNE (from line#)-(to li (new location 1li)
ne'!r#.)he move I"f‘?ﬁ?ctit.‘:r1 works alrros:eztactly the same as the 'COPY'
function only the original lines 'fram-to' are removed from the file
after they are copied to the new location. The file is resequenced
the same 1n the copy function.

Example: MOVE 1100-1345 100

This would move the lines from 1100 thru 1345 to the next line
following line 100.

AUTO [1 digit increment value) [line 3)

Causes the camputer to type sequential line numbers incremented
by the specified 1 digit value. If not specified the line 3 will be
incremented by 10. Also an optional starting line 3= can be
specified. This is used for entering sequential text lines without
having to specify line numbers, they will automatically be typed
after each line is entered.

Example: AUTO 100

Enter auto line typing beginning with line '100' with a default
increment value of '10°'.

SIZE (Enter>
Returns the memory size that is in use and the memory that is
still available. The first number displayed is the samount of memory

in use or the size of the text file, the second is the amount of
remaining memory.

PRINTER [command line]

Specifies that the next output operation will be output to the
printer. Another cammand may follow the PRINTER command for ease of
use.

Example: PRINTER NLINE LIST (ENTER)

This would tell the editor to list the file to the printer with
o line numbers.

EXIT (Enter)
Causes control to return to 'BASIC'

NEW (Enter) :
Causes the memory file buffer to be cleared and all pointers
reset to the cold start condition.

LF (Enter) Allow line feed character output _

This function is for those users having printers that do
not automatically line feed upon receipt of a carriage return
character. Normally line feed character output is inhibited,
once this command is entered they will be output for each line
and cannot be inhibited once enabled.

ASMB ((Enter)>
This command causes the assembler portion of CORES-64 to
be entered. Upon entry to the assembler a Pass message will be
displayed, to exit from the assembler back to the Editor, enter
an "E" any time the Pass message is waiting for input.

RN (Enter>

The RUN command has been provided so that programs which
have been assembled with the object code output going €
memory, can be tested without leaving CORES-64. The oommard
will use the most recent execution address stored by o7»
assembler, this address is listed next to the END Statement o
the listing. All programs to be tested with this cammar.!
should exit or end by the use of a jump command to warmstart
JSR $703 to insure re—entry to CORES-64 without problems. When
the program is entered fram this cammand the User Stack =304900
& Direct Page =506.

Note that if this command is called pricr tc =
successful assembly of a program to memory, unpred:ctl
results will occur. :

Any time the printer is requested for an operation the
status of the printer is checked for ready. If the printer :3
found to be in a “'NOT'" READY CONDITION", A message to that
effect will be displayed and the program will wait for any »=oy
on the keyboard to be pressed, except the "BREAK" key. IF thre
"BREAK" key is depressed the printer output will be aborted.
This will allow those users not having a printer to abort ar
accidental printer request and not hang up the system.

CER-OOMP CORES—64 ASSEMBLER OPERATION

The CORES-64 assembler will assemble 6809 assembler source code and
Jenerate executable binary object code either to tape or memory. It will also
cross assemble standard 6800 assembler source code to 6809 code compatible
ohject code. These instructions assume that the user is familiar with
assembly lanquage programming and, in particular, the language of the M6809
Microprocessor . .

Source Code:

CORES-64 will accept basically two different formats of input source
code to the assembler. One form is the same as that of the EDITOR source file
in memory or the same file with the line numbers removed by the remove line
number editor commands (RLINES). This can be useful if the text buffer is
ilmost completely full and space for the assembler symbol table is needed or
/7 want to store the object code in memory. The source line format is that
of the standard Motorola Assembler which is described in several manuals
fublished by them and available from several sources.

Arithmetic Operators and Number Bases

The following operations are permitted during assembly time, which
means that an expression is evaluated during the assembly and thus becomes
part of the program being assembled. Numbers may be expressed in one of the

three bases, which is specified by a special character for Hex and Binary.
The default is decimal.

Addition

Subtraction

Multiplication

Division

Hexadecimal, numbers 0-9 & A-F may follow
Binary numbers 0 or 1 may follow

a@ NN s | +

All operations are evaluated from left to right in the order in which
they appear. All operations will be converted to 16 bits and truncated to 8
bits for required instructions.

Register Specification: 2

The 6809 has 9 registers that are accessible to the programmer, four
of which are B-bits and the other five are 16-bits. They are referenced in this
assembler by the following notation:

(8) A Accumulator A

(8) B Accumulator B

(8) CC Condition Code Register
(8) DP Direct Page Register

(l16) X 'X' index register
(16) Y 'Y' index register
(16) U User Stack pointer
(16) S System Stack pointer

(16) PC,PCR Program Counter & Program Counter RELATIVE

The Program counter (PC) can be used to instruct the assembler to
assemble code in a Position Independent manner when used in the Indexed mode.
When the Program Counter is referred to as 'PCR' it instructs the assembler to

determine the offset fram the current PC to some absolute address, thus making
the code executable anywhere in memory.

EXAMPLE: LEAX MSG1,PCR

This would determine the difference between the current PC and the
absolute address of MSGl and use it as the offset for the PC register to
calculate the effective address.

EXAMPLE: LEAX MSG1,PC

This would use the absolute address of MSGl to add to the PC register
and use that as the effective address to be loaded in the X-reg. This code is
not position independent. ;

Assember Directives

Beside the standard machine language mnemonics CORES-64 supports
several Directives. They are instructions for the assembler only and most of
them do not assemble into code. The same format applies to these directives
as the normal op codes. Brief explanations are given for the directives
supported by CORES-64.

ORG define new origin (PC=)

END signal the end of the source file

RMB reserve memory bytes

FDB form double byte

FOC form constant character

FCB form constant byte

BEQU assign value to symbol

PAG skip to top of next listing page

SPC skip specified number of lines

NAM specify program name (must be first line of program
oPT set or reset assembler options

ATH define author line contents, printed at bottom of page

ORG { expression,value)
The ORG directive causes a new origin address to be used for
the code which follows the directive (PC = address). The value may
be a number or a label that has been previously referenced in the

source file. It cannot be a reference to a ' bel that is later
defined in the program. A generated tape file will handle multiple
origins.

-10-

END (execution address)

The END directive tells the assembler that the end of the
source input file has occurred. The END directive also allows for
the assigment of a starting execution address for the binary tape
file if created. The execution address will default to the first
byte of code produced by the assembler if not specified. A label can
be used for the execution address if previously defined in the
program.

RB (expression,value)
This directive causes the assembler to reserve memory for

variable or data storage. No code is produced only the address

counter is changed and will be supported within a generated tape
file.

FCB {(value,value,value,etc.)

This directive causes an expression to be evaluated and the
resulting least significant 8 bits is stored in memory or generated
within the object file. Multiple values may be used to generate
several bytes of data each one separated by a camma.

FoB (value,value,value,etc.)
This directive is essentially the same as the FCB directive

only the expression is evaluated to 16 bits of data or 2 bytes for
each expression.

FOC (delimiter, text string, same delimiter) _

This directive is used to create strings of characters in the
object file for messages or lookup tables etc. Each character in the
text string uses one byte of memory space. The two allowable formats
are: a count followed by a text string in which case if the string
is less than the count specified it is filled with spaces. The
second form is where a text string is used by enclosing it between
two characters (delimiters) that are the same character.

label BQU {expression)
This directive is used to equate a symbol or label to an
expression or value, no code is generated. A label must be used and
an expression or value must follow the directive.

NAM (file name & comment)
This directive is used to assign a title to the assembler
listing and is also used for the tape file name. It must be
the first line of any program and can only be used once in the
program file.

SPC (value)
This directive is used to tell the assembler to space down the
specified number of lines in the output listing

PAG

This directive tells the assembler to skip to the top of the
next page in the output listing. If the "NOPAG" option. has been set
the directive will be ignored.

ATH (name,comment)
This directive will allow the author or a cament line to be
printed at the bottam of each page in the output listing. Any tex:

string following the directive up to 50 characters can be used for
the Author line.

OPT (specifiers)
The OPT directive determines how and if an object code file 1is
to be generated. There are two options for generation object code,
either ode or both may be specified, they are:

- Memory output

- Object tape output

Generate data for FCC,FCB and FDB (default)
- List symbol table after listing

- List assembled data in page format (default)
- List assembled data (default)

L OX
|

These options can also be reset by the use of the "NO" option,
that is to reset the memory option you would simply use the "OPT

NOM". For a .tape file to be closed correctly the option must be set
at the END directive.

CORES-64 Error Messages

Error codes are used to flag source statements that are in violation
of the rules and restrictions of this assembler. Error messages are output
with three asterisks and the word "ERROR" followed by the error message.. The

line listed under the error message is the line in error. The Assembler error
codes are listed below:

NAM used twice in the same program
EQU directive requires a label
Source statement syntax error

Invalid label (syntax error)

=13

Symbol has been previously defined

Invalid op code or assembler directive

Short relative branch out of range

Address mode not allowed with op code g
Byte overflow. Single byte expression converts to »255
Undefined symbol (mot in table)

Invalid register for indexed operation

Re—defined symbol (Pass 2 value differs fram Pass 1, usually caused
7 label address being referenced before assignment)

Directive operand invalid
Symhol table overflow (OUT OF MEMORY)

Assembler Overwrite (assembly to memory could destroy assembler)

=13=

CER-OOMP CORES—-64 ASSEMBLER OPERATION

ASSEMBLING WITH CORES—64

When the source file has been created or loaded by the editor and is
ready to be asembled the assembler must be entered by the use of the 'ASMB'
command in the editor. The assembler will display a Pass message and waits
for an input, at this time a printer can be specified to direct error messages
(1 pass) or the listing to the printer. The format is 'P' for printer,
| followed by the normal Pass selection and option. Note that object code will
be generated only if the "2" or "3" pass options have been selected. The "1P"
pass will clear any previous symbol table and read the source file creating a
new symbol table for those file(s). The "1S"™ pass will keep the present table
and add any new symbols to it generated by those files. The "2" pass options
require that either the "1" or "3" pass has already been run if any forward
references are made in the program, otherwise errors will occur. The "2" pass
can be useful to generate a program listing only (2L) or object output only
(2T) , the "2P" pass will generate both if the output and listing have not been
inhibited thru the "OPT" directive. The "3" pass options are the same as the
"2" pass options only the 1 pass is automatically run and then the 2 pass is
run with the specified option. This is useful for programs that have already
been debugged and are error free.

Pass Options:

1P = Build new symbol table
1S - Add to symbol table
2/3p - Generate object and listing for specified options
2/37r - Generate object only for specified options (OPT)
2/3L - Generate listing only
2/30 - Generate tape object file
2/ - Generate memory object file
Example:

ENTER PASS: 1 (P,S); 2/3(T,P,L,M,0)
>P3L

The printer output was selected by the first character 'P' and the
"3L" pass was selected for listing only.

=14~

DIFFERENCES IN CORES-64

OORES-64 has same differences fram the format standard of the 6809
auto decrement. The normal specification is ,-R and ,--R but in this
assembler is can also be , R- and R— which is the same as the auto
increment format of ,R+ and , R++,

Because of the way CORES-64 translates 6800 to 6809 code the same
code can be generated with different instructions, this can be very convenient
in many cases, especially to those who have written a large amount of 6800
assembler code. Some examples are listed below:

6809 = 6800

LEAX,1,X INX

LEAX -1,X DEX

ANDCC 3 FE cc

ORCC 1 SEC

TFR A,B TAB (CONDITION CODE NOT AFFECTED)
TFR B,A TBA (OONDITION CODE NOT AFFECTED)
LDA $22 LDAA 22 (AVOIDS SYNTAX ERRORS)
PSHS B

ADDA , S+ ABA

As can see 1t can be helpful in some instances, also note that in

the translation of the 6800 op codes TAB and TBA the condition codes are not
affected on the 6809 as they were in the 6800. So if a program is translated
which uses conditional branching following either of these instructions a
"TST" instruction must be added following it to ensure that the proper
condition codes are set for the branch instruction.

CORES-64 supports the forcing of direct or extended addressing by the
use of the symbols " “\')"' and "}". But is does not support the 'DPSET'
directive which is used 1n some assemblers to suppress error reporting when|
using non-zero based Direct page values. We suggest that if you require this'
function that the '(' be used to force direct addressing modes to be
generated. Also the listing output will be flagged in the left margin next to
the address with a '*' when non-zero direct page addressing is forced. The
listing is also flagged with a '>' in the left margin,when an Extended Branch
or Jump is not necessary. Also CORESY9 does not support the instruction "LSL"
as it is logically and machine code equal to the "ASL"™ instruction.

-15-

0010 NAM DEMO THIS IS A DEMONSTRATION PROGRAM

0020 ORG $3300 BEGIN ABOVE PROGRAM

0030 OPT NOG

0040 ATH BILL VERGONA

0050 SPC2

0060 * COMMENT LINE IS NOTED BY AN ASTERISK '*' IN COLUMN 1
0070 * THIS IS A CO-RES69 EDITOR/ASSEMBLER DEMONSTRATION PROGRAM
0080 *

0090 SPC2

0100 START PSHS DP,U SAVE CO-RES9 REGS

0110 CLRA SET DP FOR BASIC

0120 TFR A,DP

0130 LEAX PROMPT,PCR POINT TO INPUT MESSAGE

0140 BSR DISPLY DISPLAY MESSAGE

0150 LEAX INBUFF,PCR POINT TO INPUT BUFFER

0160 INLOOP JSR $B538 INPUT CHAR/FLASH CURSOR
0170 TSTA CHECK NO KEY

0180 BEQ INLOOP WAIT FOR KEY

0190 JSR [$SA002) BCHO CHAR TO SCREEN

0200 CMPA#SD RETURN KEY

0210 BEQ INEND GO IF END

0220 STA , X+ PUT CHAR IN BUFFER

0230 BRA INLOOP GET NEXT

0240 INEND LDA#4 END OF LINE MARK

0250 STA, X

0260 LEAX INBUFF,PCR POINT

0270 BSR DISPLY DISPLAY BUFFER INPUT

0280 PULS DP,U,PC RESTORE REGS & RETURN

0290 *

0300 * NOTICE () MAY ALSO BE USED FOR INDIRECT ADDRESSING
0310 *

0320 OUTCHAR JSR [$A002] DISPLAY CHAR

0330 DISPLY LDA, X+ GET CHAR

0340 CMPA#4 END CHAR

0350 BNE OSUTCHR OUTPUT IF NOT

0360 RTS RETURN

0370 PROMPT FCB $D

0380 FOC /ENTER A LINE OF TEXT ENDING WITH THE 'ENTER' KEY/
0390 FCB $D,$A,4 -
0400 INBUFF EQU * INPUT BUFFER BEGINS HERE

0410 END

-16-

CER-COMP CORES9 64K EDITOR/ASSEMBLER BY BILL VERGONA

—=— PAGE 001 DEMO THIS IS A DEMONSTRATION PROGRAM

00010 NAM DEMO° THIS IS A DEMONSTRATION PROGRAM
00020 3300 ORG $3300 BEGIN ABOVE PROGRAM

00030 oPT RoG

00040 ATH BILL VERGONA

00060 * (OMMENT LINE IS NOTED BY AN ASTERISK '*' IN COLUMN 1
00070 * THIS IS A CO-RES69 EDITOR/ASSEMBLER DEMONSTRATION PROGRAM
00080 *

00100 3300 34 48 START PSHS DP,U SAVE CO-RES69 REGS

00110 3302 4F CLRA SET DP FOR BASIC

00120 3303 IF 8B TFR A,DP

00130 3305 30 8D 002F LEAX PROMPT,PCR POINT TO INPUT MESSAGE
00140 3309 8D 26 BSR DISPLAY DISPLAY MESSAGE

00150 330B 30 8D 005D LEAX INBUFF,PCR POINT TO INPUT BUFFER
00160 330F BD BS38 INLOOP JSR $B538 INPUT CHAR/FLASH CURSOR
00170 3312 4D TSTA CHECK NO KEY

00180 3313 27 FA BEQ INLOOP WAIT FOR KEY

00190 3315 AD 9F A002 JSR [SA002] ECHO CHAR TO SCREEN

00200 3319 81 oD OMPA $D RETURN KEY

00210 331B 27 04 BEQ INEND GO IF END

00220 331D A7 80 STA X+ PUT CHAR IN BUFFER

00230 331F 20 EE BRA INLOOP GET NEXT

00240 3321 86 04 INEND LDA #4 END OF LINE MARK

00250 3323 A7 84 STA i _

00260 3325 30 8D 0043 LEAX INBUFF,PCR POINT

00270 3329 8D 06 BSR DISPLY DISPLAY BUFFER INPUT
00280 332B 35 c8 PULS DP,U,PC RESTORE REGS & RETURN
00290 .

00300 * NOTICE "()" MAY ALSO BE USED FOR INDIRECT ADDRESSING

00310 .

00320 332D AD 9F A002 OUTCHR JSR [SA002] DISPLAY CHAR
00330 3331 A6 80 DISPLY LDA , X+ GET CHAR

00340 3333 81 04 OMPA 34 END CHAR

00350 3335 26 F6 BNE OUTCHR OUTPUT IF NOT

00360 3337 39 RTS RETURN

00370 3338 OD PROMPT FCB SD

00380 3339 45 FCC /ENTER A LINE OF TEXT ENDING WITH THE 'EN
00390 3369 0D FCB $D, %A, 4

00400 336C INBUFF BQU * INPUT BUFFER BEGINS HERE

00410 3300 END

TOTAL ERRORS 00000

=19

‘131232212222 2R Rdl])

DEBUG MODULE COMMANDS

L i 22 i a2 Rl R d Rt ddddR]d)

The DEBUG module is an extension of the Editor/Assembler package. It
allows the user to test and debug machine language programs that have been
assembled to memory. To enter into the DEBUG module from the EDITOR enter the
camand "DBug" and hit the enter key. The DEBUG module sign on message should
be displayed and a ")" character will be displayed for a command prompt. This
is the only way the DEBUG module can be entered, it cannot be entered directly
from the ASSEMBLER. Once in the DEBUG module only its commands may be used.
To return to the EDITOR/ASSEMBLER use the "COres" command followed by the
enter key. The "READY" prompt will be displayed when you return to the
EDITOR.

The DEBUG module commands are similar to the Editor commands in that they
can be abbreviated by the first two characters of the command. The cammand
input line is buffered and will recognise the backspace, clear, break and
enter keys for easy error free cammand entry. FEach cammand line is terminated
by hitting the "ENTER" key. Output from any command may be temporarily paused
by hitting any key and resumed upon hitting another key.

DEBUG MODULE Commands:

<(address) Memory examine & change
<address) <{etc> Set and/or display breakpoint
{address) Remove one or all breakpoints
{value) <name> Set and/or display registers
{address) Goto address with stack
eginy (endy Dump Memory in Hex & ASCII
¢beginy dendy <byte Fill Memory with data byte

{begin} <{end) <byte) {etd Find Memory byte sequence

<begin$ {endy (destinatiomyMove block of memory

{begin) &nd Disassemble memory file
Exit monitor back to CORES64
Re-Initialize DEBUG

NGBERIRBRBUA

DEBUG error codes

- MAddress error begin) end
Command error
Conversion error on address or data byte

B88

-18-

MEmory (address) Memory examine & change

This function allows the user to examine and change the contents of a
specific memory location on a byte by byte basis.

When the function is called and a valid hex address has been entered it
will display both the address & data contained in that location of memory in
hex. If the address was not a valid hex address or none was entered the last
address stored in BEGINl will be used. " Once the address & data are displayed
the user can change that byte, and/or move forward or move backward thru
memory. If the data is to be changed simply enter the new hex 2-digit value,
if for some reason the new value cannot be stored correctly a '?' will be
displayed and the next location will be displayed normally. If an up arrow
'A'is entered the previous location will be displayed and if a carriage return

‘cr' is entered the function is ended. Any other non-hex character will cause
the next location to be displayed.

Example:
):ﬁrp 3FFE D>
3FFE 49 pericd advances to next location
3FFF 98 55 hex value changed to 55
4000 27 112 new value not changed correctly
4001 31 N display previous location
4000 27 ¢entery end function
SBreak {address) {etc) Set and/or display Breakpoints

The BReakpoint function allows the user to set program breakpoints in
memory in order to de-bug programs. If no valid address is entered the
function simply displays the contents of the breakpoint table. If a valid
address was entered and the table is not full a breakpoint (SWI) will be set
in memory and the entry set in the table. It then displays all breakpoints
set in the table. When a breakpoint is executed in a program and the SWI
interrupt jump vector in memory has not been changed a dump of the registers
will be displayed on the system console and the original code will be restored

in memory removing the breakpoint. Several breakpoint addresses may be
entered on one cammand line.

Example:
)SB 1000 13FF 1103 Set SWI at 1000, 13FF & 1103
1476 1000 L3FF 1103 Breakpoint fable contents

shows 1476 was previously set & the new ones set

-19-

RBREAK (address>, Remove one or all Breakpoints

This function allows breakpoints previously set by the SB command to be
removed individually or all at once. If a valid address was entered and it is
found in the break table only that breakpoint will be removed. If no address
is entered all breakpoints in the table will be removed. Notice that “RESET"
will not clear the breaktable unless a system initialisation is required and
that breakpoints encountered in a program are automatically removed if they
are contained in the breaktable. Only one breakpoint address can be removed
at a time,

Example:

>RB 13FF remove breakpoint at address 13FF
RB remove all breakpoints fram table
RSet (value> (name> Set and or display register contents

This function allows the user to change the value contained in a
particular processor register on the defined stack. If no value was entered
the function simply displays all the system registers and their contents. If
a valid hex value and register name were entered the contents of that register
will be replaced by the value entered. The registers will then be displayed
for visual verification of the change.

Register Names:

C - Condition code A - Accumulator A
B - Accumulator B D - Direct Page register
X - Index register X Y - Index register Y
U - User Stack pointer S - System Stack pointer
P - Program Counter
Example:

)RS 99 A change the contents of Acc-A to 99

)RS 100 X change the contents of IX to 0100

)RS display register contents

@ {address) Goto defined address with stack

This function allows the user to resume processing of a program that was
interruped by a breakpoint or other interrupt that caused a system trap entry.
If a valid address was entered with the command that address will be placed in
the program counter register on the stack prior to calling an "RTI" return
from interrupt.

Example
>® <cp> resume program at address contained in stack PC
»>G0 1000 (cr) begin execution of program at address $1000

=20~

DMemory (begin> {end> Dump Memory in Hex & ASCII format

The Dump function allows the user to display & examine areas of memory
much easier than using the memory examine & change function. The output is
formatted with 8 bytes of data per line with the ASCII characters underneath
if printable. The contents of memory between the begin and end addresses will
be displayed, if either the begin or end address is amitted or invalid the
function will be aborted and an error displayed. If the output is directed to
the printer the format will be 16 bytes per line followed by the ASCII
characters on the same line.

Example:

>DM 100 10F Display memory from $0100 thru $010F
0100 16 00 79 7E 02 4E 44 55

— s N LN DB

»?DM 100 10F Display $0100 thru $010F on printer

PMemory (beginp end> Q:yte) fill memory with data byte

This function allows the user to fill a defined segment of memory with a
specific data pattern. All three parameters must be entered with the cammand
or an error will be reported. This function can be useful for initializing
memory for a program or filling memory with a SWI (3F) for trying to trap
runaway programs.,

Example:
>FM 400 600 3F £ill memory from 400 thru 600 with 3F
>FM 2000 4000 00 clear memory from' 2000 thru 4000

FInd (begin> (end> yte> §tcy Find byte sequence

This function will allow the user to search a defined segment of memory
for a predefined byte sequence. Any number of bytes can be searched for
1,2,3,4,5 etc. depending upon how many are entered. At least the begin,end,
and 1 byte to search for must be entered or an error will be reported. If the
specified string of bytes is found in the range of memory specified the
address and data byte of the previous location, search bytes, and the one data
byte following the string will be displayed., The search will then continue
until the end address is reached, displaying the information for each
occurance of the byte sequence.

Example:
> FI AOOQ BFFF A3 90

A746 BD A3 90 SA
AA68 T7E A3 90 9F

o -

BMove (begin) (end) (destination) Block memory move

This function will move a defined block of memory from one place in memory
to another. The begin and end addresses define the block of memory to be
moved and the destination address is where it is to be moved to. If any of
the parameters are not entered an error will be displayed.

Example:
7&4 1000 1500 6000 Move 1000 thru 1500 to 6000
DAsmb (begin) <end> Disassemble memory into assembler format

This function will dis-assemble a specified segment of memory displaying
it in an assembler or code format. It will display the address of each
instruction, op code, and operand byte(s). All relative branch instruction
will also display a ')»' followed by the destination address of the branch
instruction. This function is not fool proof by any means and some sequences
of memory will be decoded as instructions which are really text characters or
data bytes. It is only designed to be an aid in debuging and disassembling
programs.

Example:
DDA AOOE AO6F Disassemble from AOOE thru AO6F
AOOE 10CE 03 D7
A012 86 37
A014 B7 FF23
A017 96 71
A019 81 55
AQ1B 26 52 DADGE branch destination address
AOID 9E 72
(Ores Exit the Debug module back to CORES

This function simply allows the user to exit from the Debug module back
into Basic. Once the monitor has been exited in this manner the RESET switch
will no longer return to the monitor but to Basic.

12 Re-initialize monitor

This function simply re-initializes the monitor to a cold start condition.
Prior to initializing all previously set breakpoints will be restored. This
can be useful if some portion of the monitor temporary storage were modified
or for any other reason the monitor may not be functioning correctly.

? (Printer Switch)

This function redirects the screen output to the printer

=2=

C omprehensive Instruction Manual

utput Assembled Machine Code to Memory,
Printer or Binary Tape File

R esident Monitor Programme for Debugging
E xtensive Editihg Commands

S upports Multiple Origins and RMB,

Produces ASCII Tape Files which can be loaded
under BASIC

***Automatic Memory Sizing for 32K or 64K**+
machines

In our opinion the Best Tape Based Editor/Assembler
yet for the Dragon

MICRODEAL

COPYRIGHT. This program is the copyright of Microdeal Limited

t Austell Cornwall No copying permitted. Sold subject to the condition that this cassette

may not be rented or re-sold
© Copyright Microdeal 1984 Made in England

