DASM
ASSEMBLER

COMVIPUSENSE

Software for Dragon/Tandy

DASM Assembler INDEX

WHAT IS AN "ASSEMBLER" 1
HOW TO WRITE AN ASSEMELY CODE PROGRAM 2
INSTRUCTIONS
LABELS
OPERANDS 2
Typea of Operand
Immediate Operands ¥
Direct Operands
Indexed Operands 4

Conatant Offset
Accumulator Offset

Auto-Increment/Decrement 4

Program Counter Relative 5

Indirect Modes - 6

Extended T
COMMENTS

ASSEMBLER DIRECTIVES T

END T

EQU RMB FDB FCC 8

ORG DSP PRT OFF ALL 9

ERR FML FMS PAG PPO 10

HOW TO ASSEMBLE AND RUN YOUR PROGRAM "

GETTING THE BUGS OUT OF YOUR PROGRAM 2.

ERROR MESSAGES 13

ERROR INDICATOR 14

SAVING YOUR PROGRAM ON TAPE 14

SAMPLE PROGRAM 15

Copyright Compusense Ltd. 1983 All Rights Heserved

DASK - Two Pass Symbolic Assembler for DRAGON/TANDY

WHAT IS AN "ASSEMBLER"

You can't avoid references to "machine code” or "assembler language”
when talking abtout computers or microprocessors. Thia is because a
computer works with numbers and is controlled using numbers. These
numbers are the "machine code”.

The first computers were programmed using machine code and, as you might
have guessed, it waa gquite difficult and slow.

Assembler programs were developed to make the job of programming the
computers easier by giving an easily remembered name (mnemonic) to each
different machine code instruction. This was called "assembly language”.

The computer was then able to aasemble {i.e. translate) the assembly
language program into machine code which it could understand.

The DASM Assembler performs this same function on your own computer to
allow you to make full use of the 6809 microprocessor inside your DRAGON
{or TANDY COLOR COMPUTER).

The remainder of this booklet explains how to write assembly language
and how to use the assembler. It is not intended to be a complete
textbook on the programming of the 6809, However it does contain useful
information and examples.

Please read thia manual carefully before attempting to use DASM. You are
recomnmended to try the Sample Program on page 20 as a firast step in
using DASM.

NOTE: in this manual the number zero is "0" be careful not to confuse
this with the letter "0".

CAUTION: YOU NUST SYITCH OFF YOUR CONPUTER WHEN INSERTING OR
BEMOVIRG ANY CAHTRIDGE.

Copyright Compusense Ltd. 1983 - Page ' - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY
HOW TO WRITE AN ASSENBLY CODE PROGRAN

INSTRUCTIONS

The DASM Assembler Cartridge and Manual are supplied with a 6809
Reference Card. All the names of the instructions that you can use with
the 6809 microprocessor are on this card. When you have mastered the
programming of the 6809 you will be able to write your programs using
this card occasionally. However until then you will need a good book on
6809 Aasembler Programming.

The Assembly instructions are typed in and edited exactly as for BASIC
programs. Several instructions may be written seperated by a ":" just as
in BASIC. For Example:

0120 CLRA:CLEB
. L]
Note: some extra instructions to control DASM are described elsewere in
a section called "Asasembler Directives”.

LABELS |

Any imstruction may be identified by a LABEL.

For example:

1000 @START LDX O,Y:@LOOP CLR O,X+:CNPFX 2,Y:BLS @LOOP

The label is optional (except on the EQU Assembler Directive
instruction - see below). A label is used to identify a data location or
an instruction. Labels always start with an @ character and may have
any number of alphabetic or numeric characters (i.e. A to Z and 0 to 9).
If you use a label with more than six character after the @ the only the
first 5 characters and the last characters are used. (i.e. the label
@LABEL1 is treated exactly as @LABEL11 or BLABEL1111111111),

A label has a effective numeric value. In the case of @START in the
above example this is the actual location, in the memory of the
computer, of the LDX instruction.

OPERAKDS

Most instructions must have an OPERAND. These are all instructions
except those which are of the INHERENT type. For example: the CLR
instruction must have an operand but CLRA is of the INHERENT type and
does not have an operand (in fact the A register is the operand). In the
example above O,X+ is an operand of the Indexed type.

Copyright Compusense Ltd. 1983 - Page 2 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

Types of Operand

There are four types of operand:
1) IMMEDIATE
2) DIRECT

3) INDEXED
4) EXTENDED

Each type must be coded in it's own particular way.

In the descriptions below, the aymbol B will be used to represent a
numeric value. This may be in any of the forms as shown:

a) decimal number ag. 123

b) hexadecimal number eg. $9AB

¢) literal constant eg. A (= 341 or 65)

d} the current addreas eg. ¥

{this is the value that a label on the same instructiom would have)
e) label ' eg. @START

f) any aimple sum formed from the terms above {i.e using + or -)
eg. ¥-@START+3AB~-'A-123 :

Ismmediate Operands

An immediate operand starts with a "#" character in the general format:
#8 . eg. LDD #1234,

Wote: The EXG and TFR instructions have a different form
specifying a pair of registers eg. EXG A,B. The PSH and PUL instructions
can be coded with a list of registers. eg. PULS A,B,PC.

Register names used in EXG, TFR, PSH and PUL are: ABD X Y U S PC oc DP
Direct Operands

A direct operand starts with a ">" character in the general format >N .
eg. STB >384 .

Direct Addressing mode is used in conjunction with the Direct Page
register which forms the most significant byte of the address. The
Direct Operand forms the least significant byte of the address.

i.e. if the DP register contains O (zero) then the above example stores
the contents of register B at location S00BA.

Mote: the DP register may be set using EXG, TFR of PUL instructions.
This should normally be avoided or done with care as unpredictable
results may occur if the DP register is not restored when returning to
BASIC.

Copyright Compusense Ltd. 1983 - Page 3 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY
Indexed Operands
The indexed addressing modes allow a variety of ways of using data in
the 6809 registers to reference information in memory.In fact the power
and flexibility of this indexed addressing mode is the main reason for
the 6809 being called "the Programmer's Miecro".

The indexed modes are grouped together as : Constant Offset, Accumulator
Offset, Auto-Increment/Decrement and Indirect Modes.

In the following desciptions the symbol R stand for the X, Y ,Uors
regiaters,

Constant uffset
General Format: ,B or M®,R . { ,R is the same as O,R)
Example:
Y REG WITH IMMEDIATE VALUE 1234
1003 LDA ,Y LOAD A REG FROM MEMORY LOCATION 1234
B REG FRON MEMOEY LOCATION 1239
Acummulator Offset
General Format: A,R B,R or D,R. This mode is similar to the
Conatant Offset above except that the offset is actually in the A, B or
D Register. This is a very powerful feature and gives, for instance, an
easy way of using tables.
Example:
1010 LDY #TABLE LOAD ADDRESS OF TABLE
1012 LDA GINCHAR GET CHARACTER TO TRANSLATE
1014 LDA 4,Y GET TRANSLATION OF CHARACTER

Auto-Inerement/Decrement

Auto-Increment Formats ,B*+ and ,R++
Auto-Decrement Formats ,=B and ,--R

This indexing mode ia especially useful in program loops to process a
table or list. Bach time that the inatruction is executed the index
register (X, Y, U or S} is incremented {or decremented) by ! or 2. The
difference in the notation between the auto-increment (the + is after
the register) and the auto-decrement { the - is before the register) is
to remind you, the programmer, that the index register is INCREMENTED
AFTER the instruction is carried out but DECREMENTED BEFORE by the

number of "+" or "-" signs.

Copyright Compusense Ltd. 19873 - Page 4 - All rights Reserved

0110 LDX #1000
0120 LDX #1020
0130 LDB #10
0140 BSR @REVERSE

0250 @REVERSE BQU *

0260 LDA ,X+ GET A BYTE FRON THE INPUT FIELD
0270 STA ,-Y HOVE TO REVERSED FIELD

0280 DECB COUNT

0290 ENE @REVERSE LOOP UNTIL B IS ZERO

0300 RTS

This example shows how auto-increment and auto-decrement can be used to
move a list of 10 characters in reverse order.

The character at location 1000 ia moved to 1019
" " " " 1001 " “ % 018

. . . .

T RS e R

Program Counter Relative
Formats: N,PCR (8/16 bit offset) N,PCRB (8 bit offset)

This mode is particularly important when writing programs which are to
be RELOCATABLE. This means that the program must still work when it is
copied to a different place in the memory of the computer. This can be
difficult (if not impossible) with some microprocessors but is
eapecially easy with the 6809 because of the PC Relative Mode.

When you use the PC Relative Mode the DASM Assembler calculates the
offset from the value of the Program Counter {PC Register). If your
program is relocated then the value in the PC register will be different
but the relative offset will be the same.

Example:

This shows how the previous example (for Auto-increment/decrement) can
be made RELOCATABLE using PC Relative indexing.

0010 @DATA EMB 20 DEFINES THE DATA AREA
0110 LEAX GDATA,PCR

0120 LEAY @DATA+20,PCR

0130 LbB #HO

0140 BSR GHEVERSE

Copyright Compusense Ltd. 1983 - Page 5 ~ All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

Note: PCR sometimes gives a 16 bit offset where a 8 bit offset is
sufficient (i.e. were a reference is made to a label later in the
program). If you want this to be an 8 bit offset then use PCRB.

Example:
1500 LDA @VALUE,PCRB

sees

3300 @VALUE FCB 55
Indirect Modes

To the newcomer to assembler programming the indirect addressing modes
can be very difficult to understand and use. Good prlrams can be written
without using indirect sddressing at all. However when designing your
program it is worthwhile considering whether indirect addressing
techniques can be used advantageously. This often means choosing a
design which uses pointers and tables.

The formats for indirect operands are as follows:

Constant Offset (R} (¥,R)
Accumulator Offset (A,R) (8,R} (D,R)
Auto-Increment/Decrement (,B++) (,--B)

PC Relative (W,Pcr) (M,PCEB)
Extended (W)

Note 1 : Because of the limited keyboard layout of the DRAGON and TANDY
computers the DASM assembler allows both round () or square brackets

to be use in indirect notation. The standard Motorola notation uses
aquare brackets only for indirect operands.

Note 2: the single increment/decrement forms { i.e. ,B+ and ,-l) are not
allowed for the indirect mode.

Note 3: the Extended Indirect format is a special case and treated as an
indexed format operand.

The Indirect Mode works by first calculating the operand inside the
aquare brackets. This gives the location not of the data, but of a
pointer to the data.

For example:

2000 LDA (@POINTER) LOADS "X" INTO REG A
3000 @POINTER FDB @DATA

4000 @DATA FCC "X"

Copyright Compusense Ltd. 1983 - Page b = All rights Reserved

DASK - Two Pass Symbolic Assembler for DRAGON/TANDY

Extended

Format: B . This is the simplest way of referencing a specific
location in memory.

For example:
1000 @DATA EQU 1000

3300 LDA @DATA LOAD THE CHARACTER AT LOCATION 1000
3310 STA $400 STORE AT LOCATION $400 = 1024

llote that the extended mode gives RELOCATABLE code only when it is used
to reference data or subroutines which are always in the same place.
(eg. in the DEMON monitor or the BASIC ROM or Reserved Areas).

COMMEHTS

DASM allows you to write two types of comment:

a) after the operand (if there is one)

for exemple: 1010 CLR O,X+ CLEAR NEXT BYTE
1020 CLRA CLEAR REGISTER A

b) as a separate line starting with "*"
for example: 2010 * THIS IS A COMMENT
2020 CLRA:®™ THIS IS ALSO A COMMENT

liote: If you use the second type of comment then the rest of the line is
treated as a comment even if you code a ":" and another instruction.
ASSEMBLEE DIRECTIVES

You will have noticed in the examples some extra instructions which are
not deseribed on your 6809 Reference Card (i.e. EQU FCC RMB). These are
instructions to the DASM Assembler to do essential tasks such as
reserving apace for data. '
END

This is the most important Assembler Directive as it must be coded as
the last line of your aAssembler Program. END may have an operand which

is the start address of your program. For example :-

10 @START EQU *
pi‘ogram lines caaes

399 END SSTART

Copyright Compusense Ltd. 19583 ~ Page 7 = All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

The END statement has put the value of @START into the register used by
BASICs EXEC command. When DASM has finished simply enter EXEC and the
machine code program will begin working from GSTART. Any label can be
used for this purpose and it need not be at the beginning of the
program. The EXEC statement can be part of the BASIC program following
the end of the DASM asaembly. Note if another EXEC is used at any time
then the value set by DASM will be overwritten.

EQY

This is very useful as it allows a label to be defined without
generating any machine code. This label may be a data location or a data
value which is used in many places in your program but may change.

For example:
4000 @TABLE EQU *
4005 HMB 100 RESERVE 100 BYTES FOR TABLE
4010 GLENGTH EQU *-@TABLE LENGTH OF TAELE
EMB
This is used (as in the above example) to reserve space in your program
for data.

FCB

This generates one or more constant bytes (B bits) of data in your
pProgram.

For example:

2000 FCB O,5FF,-3,5+512
FDE
This is similar to FCE but generatea 2 character (16 bit) conatants.
For example:

2010 FDB $12734,@LABEL
FCC
This is again similar to FCB but allows a strings of characters to be
defined as a conatant. As in FCB a single byte {8 bit) constant may also
be defined. This is useful as a delimiter for the string. The string
must start and end with a ™ character. If you want a " in the string
then type two " characters.

For example:

2020 FCC "AB""CD",4 AB™CD FOLLOWED BY 304

Copyright Compusense Ltd. 1983 - Page 8 -~ All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY
ORG

This is used to tell DASM where to put the machine code that it
produces. Normally this is not necessary as DASM automatically picks the
free space after BASIC (see the section on running the DASM Assembler).
ORG must be used with care as it is possible to make DASM overwrite it's
own or BASIC's work areas. {see the description of PPO below if you
think this might be happening).

For example:

2030 ORG 3400 DEFAULT VIDEO PAGE
2040 @VPAGE RMB $200 DEFINE VIDEO PAGE AREA

DSP

This is used to make DASM display the results of the assembly run on the
monitor or TV. This is the ipitial setting and you do not normally need
to use this unless you have used PRT or COFF.

You can slow down the rate at which the lines are displayed by DASM with
an operand parameter on the DSP command. For example: 0010 DSP $¥FFFP
will give the maximum delay of approx. ! second per line.

PRT

This is used to make DASM print the results of the assembly run on the
printer.

You may specify two control character to be sent to the printer at the
end of each page (see the PAG command below) to make the printer skip to
the top of the next physical sheet of paper. For example if your printer
requires a 30C to do thia then code: PRT 3C. This will result in null
(300} and top of page ($0C) conmtrol characters being sent to the printer
after the last line on each page. Check the manual for your printer to
find the control characters that your printer requires. If you do not
want to use this "page throw” feature or if your printer does not
support it then use PRT O.

The number of lines per page is set with the PAG command.

OFF

This is used to stop DASM printiug or displaying anything. this should
only be used when you have eliminated all the bugs from your program.
You will not be told about errors when you use OFF [except via the Error
Indicator).

ALL

This is used to make DASM print all the instructions that it processes.

You can use ALL, OFF and ZIRR to select only the parts of your program
that you want to display/print.

Copyright Compusense Ltd. 1983 - Page 9 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

EER
This is used to make DASM print only the instructions which are in
error. This is the normal setting.

FML

This is used to make DASM display/print in Long format. This includes
the addreas in memory and the first B8 bytes in hexadecimal. Use FML with
PRT and ALL to get a full listing of you program on your printer. FML is
net recommended for normal use when displaying on your TV/Monitor
because of the limited 32 character line length.

FMS

This is used to make DASM display/print in Short format. Short format
contains just the BASIC line number and the full instruction. This is
easier to read on the TV/Monitor than the Long format. FMS is the
default zetting.

PAG

This is used to make DASM stop after displaying a number of lines on
your TV/Monitor. You can continue by pressing any key except BREAK.
Note: Pressing BREAK at any time stops DASM and returns you to BASIC
mode.

fou can also use PAG to control the paging when you have specified
output te printer using PRT. See the description of the PRT command
(above) for full details.

If you use PAG without an operand then DASM will stop at that point (or
start a new page on the printer). Using PAG with an operand changes the
page aize only.

The initiml page size is 15. i.e equivalent to PAG 15.

Examples of use:

0010 PAG 10:DSP $4000:ALL:*® STOP EVERY 10 LINES

0010 PRT $C:PAG 55:PAG:ALL:® PRINT WITH 55 LINES PER PAG
FPO
DASM normally prints during the second pass through your program. The
PPO command make DASM print during the first pass as well. This may be
used to locate certain types of programming error which can cause DASM

to fail during Pasa Une without displaying any messagea.

Note that forward references to labels are always indicated as errors
in Pass One and that these error mesaages disappear in Paszs Two.

Copyright Compusense Ltd. 1983 - Page 10 - All rights Heserved

DASM - Two Pasa Symbolic Assembler for DRAGON/TANDY
HOW TO ASSEMBLE AND RUN YOUR FROGRAN

The first step is to plug in the DASH cartridge to the expansion port on
the right hand side of your computer. CAUTION: you must switch off the
computer vhenever a cartridge is to ha inserted or removed. :

To assemble a program using DASM you must precede your program with the
BASIC statements CLEAR and EXEC.

CLEAR is used to define the areas which DASM can use for it's label
table (the string space area is used for the label table) and the f‘ree
space in memory (after the area allowed for use by BASIC) where DASM can
put the machine ~ode that is generatcd. Each label uses 10 bytes of
memory. When you code CLEAR you must specify an address in free memory
but MOT in the BASIC ROM (i.e. below &HSOO0).

EXEC is usea to execute the DASM assembler at address SHCFFA.

The last instruction in your program must be END. If you put an operand
on the END instruction then the value of the operand is put into the
BASIC EXEC vector. This means in simple terms that if you put the start
addreas of your program as the cperand on END then you can execute your
program by using EXEC in BASIC or entering EXEC on the keyboard.

For example:

Q010 CLEAR 1000,aH6000:EXEC SHCFFA

0015 ®* 100 LABELS ~ PLACE MACHINE CODE AT $6000

1000 @START EQU ® START ADDRESS OF PROGRANM

-+s+ your 6809 assembler program

4390 END @START

4999 REM DASM RETURNS TO BASIC HERE - HOW RUN PROGRAN
5000 EXEC

9999 END

By clever use of labels and the FNE/FCB commands you can automaticelly
get DASM to put the length and start address and other information where
it can be picked up from BASIC eg. at the start of the program.

Cnpyright Compusense Ltd. 1983 - Page 11 - All rights Reserved

Having written, assembled and run your program you will probably have
met your first big problem - the program doesn't do what you wanted it
to do.

Unfortunately DASM cannot help you any further with debugging your
program but it's sister cartridge the DEMON monitor has many facilities
for just this purpose. In particular the setting of breakpoints. DEMON
also has some useful routines to make writing programs for the DRAGON
easier.

Whether or not you are using DEMON to debug your program you should
think about how to test your program when you are designing it - not
when you find out that it doesn't work. A good design will allow the
testing of parts of the program seperately so that errors can be
isolated more easily.

The final stage of putting the tested parts together will then be a much
more successful and rewarding experience.

VARNING: SAVE YOUR WOEK ON TAPE FPREQUENTLY AS AN UNTESTED ASSEMELER
PROGRAN CAN DESTROY THE COPY IN MEMORY.

This can happen when an error in your program makes the computer 'lock
up’ until it has been switched off and on again.

Copyright Compuseng, 114, 1983 - Page 12 - All righta Reserved

DASM - Two Pasa Symbolic Assembler for DRAGON/TANDY
ERROR MESSAGES

DASM checks your program and produces an error message if it finds an
error. The following are all the messages with an explanation of why
they are produced.

<E> LABEL?
The label field is incorrect. i.e. not a valid label.
<E> INSTRUCTION?

The imstruction is not a valid 6809 instruction or a DASM Assembler
Directive.

<E> OPERAND?

The operand field is in error. The operand may be omitted, not a valid
typ; for this instruction (eg. STA #0) or incorrect {eg. LDA ,X- or EXG
A,Y).

<E> DUPLICATE LABEL

The label has been defined previously in the program. Labels may only be
assigned a value once.

<E> NEED LONG BRANCH

A Short form ERANCH imstruction has been coded but the relative offset
is too big for 8 bits. Change the instruction to the Long form (eg. BRA
to LBRA} or restructure the program.

<E> LABEL UNDEFINED

A label value has been used in the operand field but this lall has not
been defined yet. Thia error occurs when you use a label defined later
in the program on an ORG or RMB statement as DASM (and most assemblers)
does not allow this. If you cannot easily solve the problem by
restructuring the program then define the label values at a fixed
location by uaing ORG. f

<E> OPERAND TRUNCATED

In a situation were an 8 bit value is required (for example: LDA #VALUE)
a value was found with was too large for 8 bits. The reason for the
error should be investigated. The value has been truncated to 8 bits and
then used as normal.

<E> LABEL TABLE TOO SMALL

The space for the label table (defined with CLEAR) is too small.
Remember that you must have 10 bytes for each label that you will use in
your program.

<E> HOT RAM

This error occurs when you attempt to assemble into part of the computer
Copyright Compusense Ltd. 1983 - Page 13 = All rights Heserved

DASM - Two Pass Symbolic Assembler for DRAGON/TAKDY

which does not contain Random Access Memory. For example if you write a
long program which extends past the first 32K of memory (i.e. STFFF is
the highest location at which you can assemble your program.

You will get this error if you forget the CLEAR before running the
assembler. This error may also occur if the memory in you computer is
faulty.

Other errors may also be reported when this error occurs but can be
ignored until all the NOT RAM errors have been resolved.

ERROR INDICATOR

When DASM has finished assembling your program the first byte of DASM's
work area at &H600 will be set to zero if no errors have occured. This
indic)ator can be tested with PEEK in BASIC (see the SAMPLE PROGRAM
below).

SAVINEG YOUR PROCEAM ON TAPE
Use CSAVE to save the source program.

The assembled machine code can be saved on tape by using the standard
CSAVEM command. To use this you must determine the first and last
addresses of the program and the execution atart addresa. Addresses are
displayed by DASM when you use the Long Format (see FML assembler
directive). The sample program shows one way that the CSAVEM addresses
can be found and used automatically.

Your saved machine code can then be reloaded uaing CLOADM. Remember to
use CLEAR beforehand to reserve space for the program.

Copyright Compusense Ltd. 1983 - Page 14 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

SANPLE PROGRAN

The following program demonstrates how the low resolution videc page can
be used by an assembler program. All the possible characters that can be
displayed on the DRAGON/TANDY COLOR are displayed on the screen with a
small delay (needed as the assembler program is so fast). Also
illustrated are: the use of the ZRROR INDICATOR, saving the assembled
machine code to tape and displaying the Symbol Table.

10
15
16
18
20
24
30
40
50
60
70
80
90
100
110
120
130
400
410
420
430
440
450
460
500
510
520
530

999

CLEAR 400,&H4000

EXEC 3HCFPA
ALL
@FRON FDB @FROM,@T0,@START FOR AUTO CSAVEM
@START EQU *
START WITH CHARACTER $00

CLRA

LDX #8400 START OF VIDEO PAGE

@LOOP STA 0,X+ CHANGE NEXT BYTE IN VIDEO PAGE

CMPX #80600 REACHED END OF VIDEO PAGE ?

BNE GLOOP LOOP UNTIL END OF VIDEO PAGE

LDX #3400 RESET FOINTER TO START OF VIDEO PAGE
LDY #$8000 DELAY COUNT

@DELAY LEAY -1,Y:BNE @DELAY DELAY LOOP

INCA DO NEXT CHARACTER

BEE @LOOP LOOP UNTIL A IS ZERO AGAIN

RTS END OF PROGRAM - RETURN TO BASIC
@T0 END @START

PRINT"SYMBOL TABLE":FOR I=&H4000-400-1 TO &H4000-1 STEP 10
IF PEEK(I+4)<>0 THEN PRINT"@";:ELSE 450

FOR J=I+4 TO I+9:PRINT CHRS(PEEK(J));:NEIT J
PRINT,HEXS(PEEX(I)*256+PEEK(I+1))

NEXT 1

IF PEEK(4H600)<>0O THEN PRINT"ERRORS":END
INPUT"PRESS ENTER TO EXECUTE PROGRAN";X$:EXEC

INPUT “"SAVE PROGRAN TO TAPE Y/N & ENTER";IS

IF X$="N" THEN END ELSE IF X$<>"Y" THEN 500
B=4H4000

CIAVEN"SAMPLE®, PEEK(B+1)#256 +PEEK(B+2) , PEEK(B+3)*256+PEEK(B+4),
PEBK(B+5)*256+PEEX(B+6)

E¥D

Turn your computer off and plug in the DASM cartridge. Turn your
computer on, type this program in and then RUN it. It is not neceasary

to type
them and

in the comments. If any errors are detected by DASM, correct
RUN again.

If you delete Line !G_then only errors will be displayed.

Copyright Compusenae Ltd. 1983 - Page 15 = All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

The DASM Assembler is an original software product written by:
COMPUSENSE Ltd
286D GREEN LANES

PALMERS GREEN
LONDON N13 SXA

Telephone 01-882-0681/6936
Telex 8813271 GECOMS G

COMPUSENSE was established in 1979 and has specialised in software and
hardware for the Motorola 6800, 6809 and 68000 microprocessors.

COMPUSENSE supplies hardware and software for systems based on the 55-50
BUS in addition to an expanding range of products for the DRAGON and
TANDY COLOUR computers.

All enquiries are directed to the above address.

A series of programs written using the DASM assembler with the full
source are available. Titles include: s Disassembler and The Game of
Life.

DRAGON is a trade mark of DRAGON DATA Ltd.

TANDY is a trade mark of the TANDY CORPORATION.

Copyright Compusense Ltd. 1983 All Rights Reserved

