

1

First Printing 1983
© 1983. DRAGON Data Limited

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means electronic,
mechanical, photocopying, recording, or otherwise; without the prior
permission of the publisher.

This book is sold subject to the condition that it shall not by way of
trade or otherwise, be lent, resold, hired out, or otherwise circulated
without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition
being imposed on the subsequent purchaser.

The author and Dragon Data Limited wish to thank the Statistics
Department of University College Swansea for facilities and help in
preparing this manual.

2

CONTENTS

CHAPTER
 PAGE

1 Getting the Show on the Road 4

2 There’s a File for Everything 6

3 Reading and Writing 13

4 More Power to your Dragon 19

APPENDIX

1 DRAGONDOS Commands 23

2 Error Codes 59

3

 Page
Chapter 1: Getting the Show on the Road
 Connecting your Disk Drive……………………….……..…….... 4
 Inserting the Disk………………………………….……………... 4
 Which Drive?……………………………………….……………. 5
 Setting Up a New Disk…………………………….…………….. 5
 Video RAM……………………………………….……………… 5

Chapter 2: There’s A File For Everything
 What’s On My Disk?……………………..……………………… 6
 Saving, Loading and Running……………..…………………….. 6
 Retrieving Programs from Disk…………..……………………… 7
 Saving and Loading Machine Code……..………………...…….. 8
 Backup Files……………………………..……………...……….. 9
 Copying and Renaming………………..………………………… 9
 Housekeeping……………………………………….…………… 10
 Putting the Pieces Together……………………………………… 10
 For Your Protection……………………………………………… 11
 A Spare Copy — Just in Case…………………………………… 11
 Some Useful Functions………………………………………….. 12

Chapter 3: Reading and Writing
 Data Files………………………………...………………………. 13
 Simulated Random Access….…………………………………… 16
 Too Many Files……………………………………….………….. 17
 Is This The End?…………………………………………………..17
 Reading and Writing Without Files……………………………….18

Chapter 4: More Power To Your Dragon
 Where Have I Put My Memory?…………………………………. 19
 Don’t Stop For Errors…………………………………………….. 19
 On The Third Stroke………………………………………………20
 Hold On A Moment!……………………………………………... 20
 Fair Exchange…………………………………………………….. 21
 Take A Hundred Lines…………………………………………… 21
 Booting Another DOS……………………………………………. 22

4

CHAPTER1 GETTING THE SHOW ON THE ROAD
Connecting Your Disk Drive

Before turning on the power supply to either Dragon or disk drive, the
units should be assembled as follows:—

(a) Connect the ribbon-wire from the disk drive to the DOS (Disk

Operating System) cartridge.

(b) Position the disk drive on a horizontal surface near to the Dragon,

making sure that the cartridge will reach the Dragon’s cartridge
port, with plenty of slack in the ribbon-wire.

(c) Insert the DOS cartridge in the cartridge port and push it home,

positioning the slack ribbon wire so that it will not be accidentally
pulled out.

(d) Connect the disk drive power line to the socket in the back of the

disk drive.

(e) The disk drive was supplied with a card in the disk port. This

should now be removed.

(f) Ensure that Dragon and TV are properly connected up and turn on

the power supplies to all units.

The TV screen should first show the usual copyright messages, then
after a few seconds, a special message indicating that the disk drive is
attached. (If it does not, switch off and check all the connections.) The
message should be followed by OK and the usual cursor.

Inserting the Disk

The correct disk to use is a single sided double density five and a
quarter inch mini diskette.

The DOS can support up to four drives with single or double sided
disks, but the standard drive unit is single sided. Double sided disks
may be used, but only one side will be formatted. Insert the disk into

the disk port, with the open window towards the drive and the small

5

notch on the left. Secure the disk by pushing down the locking device
(which will slide forward a short way when it is secured). To release the
disk, press in the locking device and remove the disk.

Which Drive?

If there is more than one drive attached to the DOS, it is important that
each command is directed to the correct drive. The DRIVE command
may be used to alter the default drive number, DEFD. When a
command does not specify a drive number, DEFD is assumed. On
power-up, DEFD is set to 1.

DRIVE n
sets DEFD to n (n=1, 2, 3 or 4).

Setting Up a New Disk

When a disk is used for the first time, it must be formatted, or
“initialised”. This is done by typing the command

DSKINIT drive, sides, tracks
and pressing ~NTER]. Parameter drive is the drive number (for use
when more than one drive is attached), sides is the number of sides to
be formatted (1 or 2), and tracks is the number of tracks per side (40 or
80). The default values for sides and tracks are respectively 1 and 40.
The default for drive is DEFD (as set by DRIVE). For the standard
Dragon disk drive it is usually sufficient just to type DSKINIT. The
disk drive will operate for some time, after which “OK” should appear.
If an error message appears, remove and re-insert the disk and try again.
Repeated failure to format may be caused by a damaged disk.

Note that a disk should only be formatted the first time it is used.
Subsequent formatting will have the .effect of wiping~ all records from
the disk.

Video RAM

The DOS cartridge has the effect of moving the video RAM up one
page, so that the first page starts at byte 3072 instead of 1536. This can
cause problems with some programs designed to be used with the
cassette recorder. If they write directly to the area occupied by the DOS,
the disk operating system can be corrupted. To restore, just switch the
computer off and on again.

6

CHAPTER2 THERE’S A FILE FOR EVERYTHING

What’s on My Disk?

The command DIR drive, where drive is the number of the required
disk drive, will produce a list of all files on the disk on that drive, and
will also give the number of free bytes available for new files (this
information is also available via the “FREE” function). The default
value of drive is DEFD(as set by DRIVE).The full title of a file is of the
form drive:filename.filetype

where filename is the user-assigned filename (up to 8 characters,
starting with a letter), and filetype is a code of up to 3 characters used to
distinguish files of the same name. The following three-letter codes are
produced automatically to help distinguish files of Basic, machine code
etc.

BAS — Basic program
BAK — Backup file
BIN — Binary file, e.g. Machine code
DAT — Data file.

Against each file in the directory will be a number. This is the number
of bytes allocated to that file.

DIR 2
gives the directory of files on the disk on drive number 2. If the
directory contains a large number of files, [SHIFT] and may be used, as
with the LIST command, to pause. Press any key to restart.

Saving, Loading and Running

Saving a Basic Program
If you have a Basic program in memory, it may be saved on disk using
the command

SAVE”PROGRAM”

The name “PROGRAM” can be replaced by any name of up to 8
characters, starting with a letter. When you press [ENTER] the drive
will operate for a few seconds, and OK will appear on the TV screen.
Even programs which take a minute or two to save on tape take only a
few seconds on disk.

7

Now you can use the DIR command to list your files. The file
PROGRAM. BAS will be listed. The number against the program
indicates the number of bytes taken up by that file.

The filetype BAS is allocated by default, and the BAS, BAK, BIN,
DAT nomenclature is designed to help you to keep track of files and to
provide a simple backup system. You can, however, invent your own
system and use, for example,

SAVE”PROG.A”
or SAVE”PROG.1A”

Retrieving Programs from Disk

If a Basic program called “PROGRAM” has been saved on a disk, it
may be loaded into memory using the command

LOAD”PROGRAM”

If you want to load and run a Basic program, you can use the RUN
command, which has been extended by the addition of the DOS
cartridge. Without using the LOAD command, you can type

RUN”PROGRAM”
and the Basic program PROGRAM will be loaded and run. You can, of
course, achieve the same result using the two commands

LOAD”PROGRAM”
RUN

Another way of loading and running is the CHAIN command. This
performs in the same way as RUN, except that the values of variables
are preserved, instead of being set to zero. The command

CHAIN”PROGRAM”
will load and run the Basic program PROGRAM, without setting
variable values to zero (and strings to null).

As an example of the use of RUN and CHAIN, try typing in the
following short programs

10 Z=X+Y
20 PRINT “SUM=”;Z
SAVE”SUM”
10 Z=X*Y
20 PRINT “PRODUCT=”;Z

8

SAVE”PRODUCT”
10 Z=(X+Y)12
20 PRINT “AVERAGE=”;Z
SAVE”AVERAGE”
10 INPUT”X”;X
20 INPUT”Y”;Y
SAVE”INPUT”

You now have four short files: SUM.BAS, PRODUCT.BAS,
AVERAGE.BAS and INPUT.BAS.

You can use
RUN”INPUT”

to input a value for X and a value for Y. For example
X? 10 [ENTER]
Y? 6 [ENTER]

then the CHAIN command can be used to work out the sum, product or
average.

CHAIN”PRODUCT”
will give

PRODUCT= 60
and

CHAIN”AVERAGE”
will give

AVERAGE= 8
and so on.

For two numbers, the method is hardly worth bothering about, but for
programs involving large amounts of data it can be useful.

CHAIN can be used with a parameter::-
 CHAIN”PROGRAM”,entry
where entry is the line-number at which execution is to start.

Saving and Loading Machine Code

Machine code (or any other series of bytes) may be saved on disk using

SAVE”CODE” ,start,end,entry
where start is the starting address of the code in memory, end is the
addresss of the byte following the last byte of the code in memory and
entry is the entry point (the default EXEC value). “CODE” may be
replaced by any other legal filename.

9

The file will appear in the directory with the filetype BIN (a binary
file). Binary files may be loaded using
 LOAD”CODE .BIN”,begin
where begin is the new start address. The default value for begin is the
start address of the original code (when it was saved). The default
EXEC address is calculated relative to begin.

Backup Files

When you SAVE a Basic program using a filename which is already in
the directory, the old version is transferred to filetype BAK and the
new version is recorded in the BAS filetype. Any previous .BAK
version is overwritten. e.g. suppose PROGRAM.BAS already exists,
and you save a new program using

SAVE”PROGRAM”
There will now be two files:

PROGRAM.BAS
PROGRAM.BAK

PROGRAM.BAS is the second (latest) version; PROGRAM.BAK is
the first version.

If you now save another program using
SAVE”PROGRAM”

there will still be two versions recorded, but now PROGRAM.BAS will
be the third version and PROGRAM.BAK will be the second version.
The first version is no longer recorded.

The backup version may be loaded, using
LOAD”PROGRAM .BAK”

(or RUN, or CHAIN) so if you discover that your latest version has
errors and you want to go back to your backup version it is always
available.

An identical backup system operates for binary files and data files. If
two or more files of different filetypes have the same name, the backup
files will have the same name and will overwrite each other, so that only
the most recent file will have a backup version.

Copying and Renaming

Files may be duplicated using the COPY command. The command
 COPY”FILE 1 .BAS” TO “FILE2.BAS”
makes the Basic file FILE2.BAS a copy of FILE1.BAS. Both files then
exist on the disk. Note that it is essential to include the filetype (in this

10

case BAS) of both files. The new filetype need not be the same as the
old one, but it is advisable to keep to a reasonably logical system.

If the purpose is just to give the file a new name (i.e. the original is no
longer required) then the command to use is

RENAME”FILE1.BAS” TO “FILE2.BAS”
This has the same effect as the COPY command, except that FILE 1 is
deleted.

The copy command is particularly useful when files are to be
transferred from disk to disk (when more than one disk drive is
available).

COPY “1 :PROG.BAS” TO “2 :PROG.BAS”
copies PROG.BAS from disk 1 to disk 2.

You have some choice in the way you refer to files. The drive number
may come before or after the filename, provided there is a colon
between the two. i.e. 1:PROG.BAS and PROG.BAS:1 refer to the same
file. Also, you can replace the “.“ by “I”. i.e. PROG.BAS and
PROG/BAS refer to the same file.

Housekeeping

If you continue to create new files for long enough, the disk will
eventually fill up. This can be anticipated by keeping an eye on the
number of free bytes (using either the FREE function or the DIR
command). If you try to save a file which is too large, the file will be
created, taking up all free space on the disk, but a DF ERROR will
occur. The file created may not be complete and should be deleted and
resaved on another disk.

To avoid this problem, it is good practice to delete all unwanted files as
soon as they become unwanted. This may be achieved with the KILL
command.

KILL”PROGRAM .BAS”
will delete the file PROGRAM.BAS. As with COPY and RENAME,
the filetype (e.g. BAS) must be included.

Putting the Pieces Together

A Basic program held on disk may be combined with a Basic program
held in memory using the MERGE command. The dominant program is
the program on disk, so if there are any program line numbers in

11

common it will be the disk versions which are retained. The resulting
program will reside in memory; the original disk version will remain on
disk.

For example, if file FILE1 .BAS contains

10 INPUT”A”;A
20 INPUT”B”;B
30 SUM=A+B
40 PRINT “SUM=”;SUM and FILE2.BAS contains
25 INPUT”C”;C
30 SUM=A+B+C

then the effect of typing
LOAD”FILE 1”
MERGE”FILE2”

will be the following program in memory:
10 INPUT”A”;A
20 INPUT”B”;B
25 INPUT”C”;C
30 SUM=A+B+C
40 PRINT”SUM= “;SUM

For Your Protection

To avoid the consternation of typing KILL”PROG.BAS” and then
discovering you have deleted two hours work, it is worth learning about
PROTECT.

Any file may be protected from over-writing and deletion using the
command

PROTECT ON “FILE.BAS”
Commands such as KILL”FILE.BAS’~ will then fail, until the
protection is removed by

PROTECT OFF “FILE.BAS”
While it is protected, a reverse screen “P” will appear against the
filename in the directory of files.

A Spare Copy — Just in Case

For those who don’t like all their eggs in one basket, there is a simple
method of creating backup disks. If you have more than one drive, this
is achieved “at a stroke”.

12

 BACKUP source TO dest, sides, tracks
will create a track by track backup copy from the disk on the source
drive to the disk on the dest drive. The parameters sides and tracks are
respectively the number of sides (1 or 2) and tracks (40 or 80). The
default values are source=DEFD, dest=DEFD, sides=1, tracks=40.

Clearly, when source and dest are the same (as in the default values)
there is a problem concerning two disks and only one drive. Under these
circumstances, when the BACKUP command is used, your Dragon will
instruct you alternately “INSERT SOURCE” and “INSERT
DESTINATION” until the whole content has been transferred.

Directory tracks are always verified during BACKUP; other tracks are
verified if VERIFY is “ON” (the normal power-up condition). This
verification can be suppressed using the command VERIFY OFF, and
re-activated with VERIFY ON.

As the BACKUP command uses whatever space is available, to obtain
faster copying delete the contents of memory by typing NEW before
starting a BACKUP.

Some Useful Functions

Information about files is given in the file directory, which can be called
up using the DIR command. Lengths of individual files and the amount
of free space on a disk may be found using functions FREE and
LOF.

PRINT FREE drive
will give the number of bytes free on drive number drive. The default for
drive is DEFD.

PRINT LOF”FILE.BAS”
will give the length of file FILE.BAS in bytes. The filetype (e.g. BAS)
must be specified.

These may also be used in programs, e.g.

10 X=FREE
20 Y=LOF”PROG BAS”
30 PRINT”THERE ARE”;X;”BYTES FREE,”
40 PRINT”AND PROG TAKES”;Y;”BYTES.”

13

CHAPTER3 READING AND WRITING

Apart from the obvious speed advantage that disks have over cassettes,
we have seen that loading files is easier because of the directory of
filenames — you don’t have to read through a dozen files before you find
the one you want (or, alternatively, you don’t need a case full of
cassettes!). This advantage is very important when it comes to reading
and writing data.

Data may be stored on disk in two ways: in files, as programs are
stored, or by writing directly to a particular sector on a particular track.

Data Files

The easiest way to use data files is via the simplest form of the FREAD
and FWRITE commands. To use these simple forms of the commands
you do not need to create the file in advance, or “OPEN” it.

The program

10 FWRITE”FILE”;X,Y,Z
will create a file FILE.DAT (provided it doesn’t already exist) and
record in that file the values of X, Y and Z. Subsequently, the program

20 FREAD”FILE”;A
will read in from file “FILE.DAT” the three values as one number. This
is because the FWRITE command does not write a terminator after
each value, so that the more extended form of the command (see page
14) can be used. To overcome this, the terminator must be forced in the
following way

10 FWRITE”FILE”;X,”,”,Y,”,”,Z
20 FREAD”FILE”;A,B,C

One problem which arises with strings is demonstrated in the
following program:

10 X$=”THIS IS IN FACT, A SENTENCE.”
20 FWRITE”OUTPUT”~X$
30 FREAD”OUTPUT”;A$
40 PRINT A$

The result of running this program is

THIS IS
i.e. the comma has been taken as a terminator for the string.

14

The program may be continued
50 FREAD”OUTPUT”;B$,C$

 60 PRINTB$:PRINTC$
which gives

THIS IS
IN FACT
A SENTENCE

To overcome this problem we have the FLREAD command.
10 X$=”THIS IS, IN FACT, A SENTENCE”
20 FWRITE”OUTPUT”;X$
30 FLREAD”OUTPUT”;A$
40 PRINT A$

The new program gives
THIS IS, IN FACT, A SENTENCE.

In the form described, the FWRITE command will always start writing
at the present “end of file”, extending the file as it goes. It is therefore
advisable to delete previous versions of data files before re-running
programs.

For more sophisticated use of data files, the commands FWRITE,
FREAD and FLREAD may be used with parameters:

FWRITE”FILENAME”, FROM start, FOR length; variables
FREAD”FILENAME”, FROM start, FOR length; variables
FLREAD”FILENAME”, FROM start, FOR length; string

The FROM parameter (start) selects the byte in the file at which the
record starts. For FWRITE it defaults to the end of the file; for FREAD
and FLREAD it defaults to the beginning of the file, when a “read” is
first performed.

The FOR parameter (length) determines the length of the record to be
written (in the case of FWRITE) or the number of bytes by which the
byte count is advanced (in the case of FREAD and FLREAD). Its
default value is equal to the length of the record being processed.

Before a FROM value can be used with FWRITE, the position in the
file (and the file itself) must already exist. This may be achieved with
the CREATE command.

CREATE”FILE”,size
creates a file FILE.DAT of length size (default 0).

15

The following is an example of the use of these commands.
10 X$=”FIRST”:X=50:Y$”SECOND”:Y80
20 FWRITE”DATAFILE”,FOR20;X$
30 FWRITE”DATAFILE”,FOR20;Y$
40 FWRITE”DATAFILE”,FROMl0;X
50 FWRITE”DATAFILE”,FROM30;Y

Provided DATAFILE.DAT does not exist already, line 20 will create it,
giving it length 20, with the record “FIRST” at the beginning. Line 30
writes “SECOND”, starting at the current end of file and extends the
file by 20 bytes.
Line 40 inserts the value of X at byte 10.
Line 50 inserts the value of Y at byte 30.
Note that if line 40 read

40 FWRITE”DATAFILE”,FROM10,FOR20;X
then the record “SECOND” would be overwritten with blanks.

The following may be used to read the record

60 FREAD”DATAFILE”;A$,A,B$,B
70 PRINTA$,A,B$,B

This results in
 FIRST 50
 SECOND 80

Another way to read the values only is

60 FREAD”DATAFILE”,FROM1O,FOR2O;A
70 FREAD”DATAFILE”;B
80 PRINTA,B

Here, line 60 reads the value of A, starting at byte 10, and advances
the read pointer to 30 (adding 20 to the start of 10) ready for the
reading of B in line 70.

The function LOC may be used to determine the position of the read
pointer in a file.

PRINT LOC”FILE”
gives the next byte to be read in FILE.DAT.

16

Simulated Random Access

The FROM/FOR form of address allows indexed records to be stored
and retrieved in any order. The following “database” construction
provides a simple illustration.

Two small programs are required. The first is used to create the data file
and store data in it. The second is used to retrieve the data.

10 INPUT”FILENAME”;N$
20 INPUT”NUMBER OF RECORDS”;N
30 INPUT”MAXIMUM LENGTH OF EACH RECORD”;L
40 CREATE N$,N*L+20
50 FWRITE N$,FROM 0, N
60 FWRITE N$,FROM 10; L
70 INPUT”RECORD NUMBER”;I
80 PRINT”RECORD”;I;
90 INPUTR$
100 FWRITE N$, FROM(I~1)*L+20, FOR L; R$
110 GOTO7O

SAVE”STORE”

10 INPUT”FILENAME”;N$
20 FREAD N$, FROM 0; N
30 FREAD N$, FROM 10; L
40 INPUT”RECORD NUMBER”;I
50 FLREAD N$, FROM(I~1)*L+20, FOR L; R$
60 PRINT R$: GOTO4O

SAVE”RETRIEVE”

The data file is created using

RUN”STORE”
The program first asks for a filename (any legal filename may be
given); then the number of records. As a test, give this the value 5.
Maximum record length (the longest string you intend to store), say
20. Try entering the following records (in any order):

17

 1 ALICE
2 BOBBY
3 CAROL
4 DAVID
5 EDWARD

Records may be overwritten, e.g. we could replace 4 DAVID with 4
DAWN. Then the program is terminated with the [BREAK] key. Now
the records may be retrieved using

RUN”RETRIEVE”
The filename must be specified again, but the other parameters are
read from the file. Now if we enter a number from 1 to 5, we retrieve
the relevant record.

Too Many Files!

The FWRITE, FREAD and FLREAD commands may be used with
different filenames simultaneously, but every time a new file is created
or accessed it is left “open”. Up to ten files may be open at any
particular time. (A file may be opened for read and write
simultaneously, but only counts as one file.) Any attempt to open an
eleventh file will result in a TF ERROR. All files on a particular disk
may be closed using the CLOSE command.

This has the effect of setting all read pointers (accessed by function
LOC) to zero.

CLOSE drive
closes all files on the disk on drive number drive. If drive is not
specified, all files on all disks are closed.

Is This The End?

A problem which frequently presents itself when reading records from
a file is knowing when to stop. A useful function for this situation is
EOF. If you include the statement

X = EOF(”FILE”)
in your program, X will usually take the value 1. But if the read
pointer is at the end of FILE.DAT (i.e. there are no more records to
read) it will have value 0.

A typical use of EOF is in loading an array from a file, when you are
not sure how many values you have to read.

18

 10 I=0
20 FREAD”DATAFILE”;A(I):I=I+ 1
30 IF EOF(”DATAFILE”)=l THEN 20

Of course, you will usually need a DIM statement.

Reading and Writing Without Files

When a disk has been formatted, it is divided into tracks, and each
track is divided into sectors. The standard drive works with 40 tracks,
and 18 sectors per track. Each sector is 256 bytes.

Each 256-byte sector can be individually accessed by the SWRITE and
SREAD commands.

To write a record to a sector, the record is assembled in two strings, e.g.
X$ and Y$, each having a maximum of 128 bytes. The command to use
is then

SWRITE drive, track, sector, X$, Y$
where drive is the disk drive number (1-4), track is the track number (0-
39 or 0-79) and sector is the sector number (1-18 or 1-36). X$ and Y$
may be replaced by any strings, and may be ordinary strings
containing letters, numbers and symbols, or they may be assembled
using the CHR$ function. If either of the strings is less than 128 bytes,
the spare space in the sector will be filled with CHR$(0) characters.

To retrieve data directly from a sector, the command is
 SREAD drive, track, sector, X$, Y$
where all parameters are as in SWRITE.

Whether or not the strings written to the sector were of full 128 bytes
length, the strings now retrieved will be. They will each contain the
bytes of the appropriate original string, followed by a series of CHR$(0)
characters. It will be necessary to CLEAR sufficient string space for the
full 128 bytes each.

19

CHAPTER4 MORE POWER TO YOU DRAGON

In addition to the specifically disk-orientated commands, the DOS
cartridge contains several new commands and functions to enhance
your Basic interpreter.

Where Have I Put My Memory?

Two useful additions to the MEM function are HIMEM and FRE$.

PRINT HIMEM
gives the highest memory location available to Basic. On power-up this
has value 32766. If space is reserved for machine code or data using the
second parameter of the CLEAR command, then HIMEM will take the
value 1 less than the second parameter. e.g. the program

10 CLEAR 200, 32000
20 PRINT “TOP OF BASIC MEMORY =“,HIMEM

gives the result
TOP OF BASIC MEMORY = 31999

PRINT FRE$

gives the number of free bytes available for strings (at power-up it is
200). Although it ends with a “$“, FRE$ is a numeric variable, not a
string. This is particularly useful for programs which require strings to
be entered from the keyboard. When string space is getting short, a
suitable message can be displayed suggesting a “dump” to disk. A
suitable program statement would be

IF FRE$<255 THEN PRINT “DUMP REQUIRED”
Reference to FRE$ causes a “garbage collection”, i.e. the storage of
strings is reorganised to make most efficient use of the space available.
It, can therefore be used during intentional pauses in a program to
avoid those embarrassing unplanned pauses that sometimes occur in
large string-handling routines.

Don’t Stop For Errors

Whenever your Dragon detects an error, it will stop the program and
give you an error message. For most programming errors, it is essential
to stop and correct the program. But some errors are caused by
“operator error” such as keying in wrong data. The following program
provides a simple example.

20

 10 INPUT”X”;X
20 INPUT”Y”;Y
30 PRINT”X DIVIDED BY Y =“,X/Y
40 GOTO10

The obvious way that an operator could “crash” this program is by
giving Y the value zero. The program will then stop with a /0 ERROR
IN 30 message. Of course, we can always test every value of Y as it is
entered to check for zero, but a more convenient (and more powerful)
method is now available.

The statement ERROR GOTOn tell the Dragon that if an error is
detected control should be passed to line number n. Once this has
occurred, there are two functions which help to identify the error: ERL
gives the line number where the error occurred, and ERR gives a code
number (each type of error has a different code number).

The code for /0 is 20 so the following lines may be added to the
program to deal with the error.

5 ERROR GOTO5O
50 IF ERR=20 THEN PRINT “CANNOT DIVIDE BY

ZERO”:GOTO10
60 PRINT”ERROR NUMBER”;ERR;”IN LINE”;ERL

Now if we input 15 for X and 0 for Y, we have the “CANNOT DIVIDE
BY ZERO” message, but the program continues. If we give X the value
1E50 we have “ERROR NUMBER 10 IN LINE 10” (error 10 is OV
ERROR).

There is a list of error codes at the back of this manual in Appendix 2.

On The Third Stroke. . .

A command that’s guaranteed to attract attention is BEEP. Included in a
Basic program, BEEP produces a decent sounding “beep”. BEEPn
produces n of them.

Hold On a Moment!

For those occasions when your screens of text disappear before people have
had a chance to read them, we have WAIT. WAITn suspends execution of the
program for n milliseconds. So WAIT1000 gives you a second, and
WAIT10000 gives you 10 seconds etc. Here is a simple example.

21

 10 CLS
 20 PRINT “YOU SHOULD HAVE TIME”,”TO READ THIS.”

30 WAIT2500
40 CLS

Fair Exchange

A useful function, especially in areas like “sorting” programs, is
SWAP, which allows you to exchange the values of two variables,
without the tedious problem of a temporary storage variable.

SWAP X,Y
gives X the value of Y and Y the value of X.

Take a Hundred Lines

if you have ever typed in a line with the wrong number (e.g. 11 instead
of 110) you will be aware that it can be quite a problem. Not only is the
line missing from where it should be, it also turns up where it
shouldn’t be — and has probably over-written another important line.
This sort of thing won’t happen if you use AUTO, for automatic line
numbering.

AUTO start, increment
will give you numbers starting with start and going up by the amount
increment. You type your lines in, ending each line with ~NTER], then
to return to normal mode just type ~NTER]. AUTO overwrites
whatever is in memory on the particular lines being input, but does not
“NEW” the program, so it can be used to insert lines. The default values
for start and increment are respectively 100 and 10.

The following example shows how AUTO can be used.

AUTO100,100
OK
100 PRINT”FIRST PAGE”
200 PRINT”SECOND PAGE”
300 PRINT”THIRD PAGE”
400 [ENTER]

22

We may decide at this point that we should have used some CLS
statements:

AUTO50, 100
OK
50 CLS
150 CLS
250 CLS
350 CLS
450 [ENTER]

But this is speed reading taken to extremes! So we must insert some
pauses:

AUTO120,100
OK
120 WAIT2500
220 WAIT2500
320 WAIT2500
420 [ENTER]

This has the desired effect.

Booting Another DOS

For loading other operating systems from disk, there is a BOOT
command. This loads the system into memory at byte 9728. The
command to execute it is then EXEC9730.
The BOOT command takes the form
 BOOTn
where n is the number of the disk drive (default DEFD).

23

APPENDIX 1

DRAGONDOS COMMANDS

24

AUTO

The command AUTO produces line numbers for a program
automatically.

AUTO
produces lines starting with 100 and incrementing in steps of 10.

AUTO 50,5
produces lines starting with 50 and incrementing in steps of 5.

The AUTO mode is terminated by pressing [ENTER] immediately after
a line number has appeared.

AUTO overwrites lines which have the relevant numbers, but leaves
others unchanged.

25

BACKUP

The command BACKUP creates a backup copy of a complete disk (1 or
2 sides).

BACKUP 3 TO 4, 2, 80
creates a backup copy of disk 3 on disk 4 (2 sides, 80 tracks).

If the source and destination disks are to use the same drive, your
Dragon will give instructions for inserting the source and destination
disks alternately.

BACKUP
creates a backup copy of a source disk on a destination disk, using only
drive DEFD, 1 side, 40 tracks.

26

BEEP

The command BEEP gives an acceptable sounding “beep”.

BEEP
gives 1 beep.

BEEP 20
gives 20 beeps.

27

BOOT

The command BOOT loads an operating system from a disk into
memory, starting at 9728.

BOOT
loads the system from disk DEFD.

BOOT2

loads the system from disk number 2.

The system is executed using EXEC9730.

28

CHAIN

The command CHAIN may be used to load and run a program,
preserving the values of variables. This is useful when more than one
program is to be run on the same set of data.

CHAIN”PROG2”
loads PROG2.BAS from drive DEFD and starts execution at the first
statement without initialising variables to zero or strings to null.

CHAIN”PROG3”,50
loads PROG3.BAS from drive DEFD and starts execution at line 50,
without initialising variables to zero or strings to null.

CHAIN”2:PROG”
performs the CHAIN operation on program PROG.BAS from the disk
on drive number 2.

When using the CHAIN command with programs that use string
variables it is recommended that a garbage collection be forced at the
start of every CHAINed program. This can be achieved by including a
call to the function FRE$ as the first statement of the program. For
example:

10 ZZ = FRE$ ‘FORCE GARBAGE COLLECTION
20 REM REST OF CHAINed PROGRAM FOLLOWS

29

CLOSE

The command CLOSE is used to close files which have been opened by
commands such as FWRITE, FREAD and FLREAD. A maximum of 10
files may be open at any particular time, so it is sometimes necessary to
close files before opening others. When a file is closed, its read pointer
(accessed by function LOC) is set to zero.

CLOSE
closes all files on all disks.

CLOSE2
closes all files on the disk on drive 2.

30

COPY

The command COPY is used to make copies of files. The copy and the
original may be on the same disk or on different disks (if you have
more than one drive).

COPY”ORIGINAL.BAS” TO “NEWFILE.BAS”
Makes NEWFILE.BAS a copy of ORIGINAL.BAS(on the disk on drive
DEFD). The filetype (e.g. BAS) must be included in the specification of
both files.

COPY”1 :FILE .BAK” TO “2:BACKUP.AAA”
makes the file BACKUP.AAA on disk 2 a copy of FILE.BAK on disk 1.

31

CREATE

The command CREATE may be used to create a datafile.

CREATE”DATAFILE”
creates DATAFILE.DAT with length 0 bytes.

CREATE”DATAFILE”,80
creates DATAFILE.DAT with length 80 bytes.

32

DIR

The DIR command lists the files on a disk and gives the number of
bytes allocated to each file and the number of free bytes on the disk.

DIR
lists the files on the disk on drive number DEFD (as set by DRIVE).

DIR 2

lists the files on the disk on drive number 2.

A typical directory of files is as follows:

DIR
 BASPROG .BAK 1855
 MACHCODE .BAK 3809
 BASPROG .BAS 1855
 DATAFILE .DAT 3000
 MACHCODE .BIN 1009
 163072 FREE BYTES

In this directory, BASPROG.BAK is a backup version of Basic
program BASPROG.BAS, MACHCODE.BAK is a backup version of
binary file MACHCODE.BIN, and DATAFILE.DAT is a data file.

33

DRIVE

The DRIVE command selects the default drive number, DEFD. All
commands which do not specify a particular drive will apply to drive
DEFD until DRIVE is used again. On power-up, DEFD is set to 1.

DRIVE 3
sets DEFD to 3.

34

DSKINIT

The DSKINIT command is used to format a new disk and set up a
directory of files. No other commands can be applied to a disk until it is
formatted.

DSKINIT
will format one side of the disk on drive number DEFD (1 unless
altered by DRIVE), setting up 40 tracks. This command may take about
a minute to execute.

DSKINIT 3,2,80
will format both sides of the disk on drive 3, setting up 80 tracks per
side.

35

EOF

The function EOF is used to check whether the read pointer is at the end
of a file (i.e. whether all records have been read).
The program statement

X=EOF(”FILE”)
will give X the value 0 if the pointer is at the end of FILE.DAT, and the
value 1 otherwise.

Note that brackets are required for this function.

36

ERL

When an error has occurred, the function ERL gives the line number in
which the error occurred.

After any error in line 50,

PRINT ERL
will return 50.

37

ERR

When an error has occurred, the function ERR gives the code number of
the error.

After an 10 ERROR (input/output)

PRINT ERR
will return the value 42 (the code for 10).

Error codes are listed at the back of this manual in Appendix 2.

38

ERROR GOTO

The command ERROR GOTO directs control to a particular line if an

error is subsequently detected.

After the command

ERROR GOTO5000
has been executed, if any error is detected, control will pass to line
5000. If another ERROR GOTO statement is executed, it will over-ride
the previous instruction.

39

FLREAD

The command FLREAD is used to read a string from a file. Commas

and colons are not regarded as terminators.

FLREAD”FILE”; string
reads a string from FILE.DAT, starting at the position of the read
pointer for that file (initially at the beginning of the file). The read
pointer is updated to the byte following the string read.

FLREAD”FILE”, FROM 100, FOR 60; string
reads a string from FILE.DAT, starting at byte 100. After reading, the
read pointer is advanced to byte 160 (100+60).

Any file accessed by FLREAD is left “open”. A maximum of 10 files
may be open at any given time.

40

FREAD

The command FREAD is used to read records from a file.

FREAD”FILE”; variable list
reads the variable list from FILE.DAT, starting at the position of th read
pointer for that file (initially at the beginning of the file). The read
pointer is updated to the byte following the final record read.

FREAD”FILE”, FROM 30, FOR 50; variable list reads the variable list
from FILE.DAT, starting at byte 30. After reading, the read pointer is
advanced to byte 80 (30+50).

Strings are terminated by commas and colons, as well as “end of line’
characters.

Any file accessed by FREAD is left “open”. A maximum of 10 files
may be open at any given time.

41

FREE

The function FREE gives the number of free bytes on a disk.

PRINT FREE
gives the number of free bytes on the disk on drive number DEFD.

PRINT FREE2
gives the number of free bytes on the disk on drive number 2.

FREE may be included in programs, e.g.
 X=FREE1

42

FRE$

The function FRE$ gives the number of free bytes available for strings.
It is not a string: it has a numeric value. Use of FRE$ forces a “garbage
collection”.

PRINT FRE$
returns the total number of bytes which are free to be allocated to
strings, after the strings already present have been packed efficiently.

43

FWRITE

The command FWRITE is used to write records to a file.

FWRITE”FILE”;variable list
writes the variable list in FILE.DAT. If FILE.DAT does not already
exist, it is created, and writing starts at the beginning. If it does exist,
writing starts at the end of the file.

FWRITE”FILE”, FROM 10, FOR 30; variable list
writes the variable list in FILE.DAT, starting at byte 10 and extending
the record length to 30 bytes. The file must already exist and be at least
9 bytes long to make it possible to start at byte 10.

Any file accessed by FWRITE is left “open”. A maximum of 10 files
may be open at any given time.

44

HIMEM

The function HIMEM gives the highest memory location available to
Basic. This is altered by the second parameter of a CLEAR statement.

PRINT HIMEM
will return 32766, unless CLEAR has been used to reserve space at the
top of RAM.

45

KILL

The command KILL is used to delete files from a directory, releasing
the disk space for other files.

KILL”PROG.BAS”
deletes the file PROG.BAS from the disk on drive number DEFD. The
filetype (e.g. BAS) must be included in the specification.

KILL”2:CODE.BIN”
deletes the file CODE.BIN from the disk on drive number 2.

46

LOAD

The command LOAD may be used to transfer Basic or Binary files
from disk to memory.

LOAD”BPROG”
will load the Basic program from file BPROG.BAS on drive DEFD into
memory.

LOAD”CODE.BIN”
will load the binary code from file CODE.BIN into the same area of
memory from which it was originally saved, and will set the default
EXEC address to the entry point specified when the file was saved.

LOAD”MACH.BIN”, 1000
will load the binary code from file MACH.BIN into memory, starting at
address 1000. If MACH was originally saved using

SAVE”MACH” ,start,end,entrv
then the default EXEC address will be set to 1000+entry—start
Note that this is a different (and more flexible) convention from that
used by CLOADM.

LOAD”PROG.BAK”
will load the file “PROG.BAK”. If it is the backup of a Basic program,
it will be loaded into the usual Basic position; if it is a binary file, it will
be loaded as CODE.BIN above.

LOAD”2:PROG”
will load PROG.BAS from the disk on drive 2.

47

LOC

The function LOC is used to find the position of the read pointer in a

file.

LOC”DATAFILE”
returns the number of the next byte to be read in DATAFILE.DAT. For
a subsequent “read” command, this will be the default “FROM”
parameter.

48

LOF

The function LOF gives the length of a file in bytes.

PRINT LOF”CODE.BIN”
gives the length of CODE.BIN in bytes.

LOF may be used in programs, e.g. X= LOF”PROG.BAS”

The filetype (e.g. BIN or BAS) must be included.

49

MERGE

The command MERGE is used to superimpose a disk file on to a Basic
program in memory. The file on disk is not affected. The result in
memory is a program containing all the line-numbers from the file,
and any line-numbers originally in memory which were not in the file.
i.e. the file and original program are mixed together, but if there are any
line-numbers in common, it is the file versions which are retained.

MERGE”PROG”

merges the Basic program PROG.BAS, on disk DEFD, with any
program in memory, overwriting where line-numbers are in common.
MERGE can only be used with Basic files.

50

PROTECT

The command PROTECT places a file in a “protected” category, so that
it cannot be overwritten or deleted.

PROTECT ON “PROG.BAS”
causes PROG.BAS to be protected, so that KILL”PROG.BAS” and
SAVE”PROG” lead to a PT ERROR.

PROTECT OFF “PROG.BAS”
removes the protection.

A reverse-screen “P” appears against protected files on the file
directory.

51

RENAME

The command RENAME is used to change the name of a file on a disk,
or to transfer a file from disk to disk.

RENAME”OLDNAME.BIN” TO “NEWNAME.BIN”
gives the file OLDNAME.BIN the new name NEWNAME.BIN. Note
that the filetype (in this case, BIN) must be included in the specification
of both names.

52

RUN

The command RUN is used to transfer a Basic file from disk to memory
and execute it, starting at the first statement.

RUN”PROG1”
loads PROG1.BAS from drive DEFD and RUNs the program.

RUN”3 :FILE .BAK”
loads backup Basic program FILE.BAK from drive number 3 and
RUNs it.

53

SAVE

The SAVE command may be used to transfer Basic programs or
machine code (or other binary sequences) from memory to disk.

SAVE”PROG”
will create a file PROG.BAS on drive DEFD containing the Basic
program currently in memory. If a file PROG.BAS already exists, it will
be transferred to the file PROG.BAK. If a file PROG.BAK already
exists, it will be over-written.

SAVE “CODE”,2000,5001,4000

will create a file CODE.BIN containing the sequence of bytes from
start-address 2000 to end-address 5000. When this file is loaded, the
default EXEC address will be set to 4000. If a file CODE.BIN already
exists, it will be transferred to CODE.BAK etc.

The disk drive number may be specified by putting drive: in front of the
file-name.
SAVE”2:PROG”
will save PROG.BAS on drive 2.

54

SREAD

The command SREAD is used to read the record contained on a single
sector of a disk. The record is 256 bytes, and is read into two strings,
e.g. A$ and B$, both of length 128 bytes.

SREAD 2, 6, 10, A$, B$
reads the 256-byte record contained on the 10th sector of the 6th track
of the disk on drive 2, placing the first 128 bytes in A$, and the last 128
bytes in B$. Even if they are made up mostly of CHR$(0) characters,
both A$ and B$ will be of length 128 bytes.

55

SWAP

The function SWAP exchanges the values of two variables.

SWAP X,Y
gives X the value of Y and Y the value of X.

56

SWRITE

The command SWRITE is used to write a record to a single sector of a
disk. The record is assembled in two strings, e.g. X$ and Y$, each of
maximum length 128 bytes.

SWRITE 3, 7, 9, X$,Y$
writes the records contained in X$ and Y$ to the 9th sector of the 7th
track of the disk on drive 3. If either X$ or Y$ is less than 128 bytes, the
extra space will be filled with CHR$(0) values.

57

VERIFY

The commands VERIFY ON and VERIFY OFF turn the verify
procedure on and off. It is normally on (at power-up) and performs a
verification on the directory track.

58

WAIT

The command WAIT suspends execution of the program, producing an
easily controlled pause.

WAIT5000

pauses for 5000 milliseconds (5 seconds).

59

APPENDIX 2

ERROR CODES

60

ERORR CODES

0 NF NEXT without FOR
2 SN Syntax Error
4 RG RETURN without GOTO
6 OD Out of data in READ
8 FC Illegal function call
10 OV Overflow
12 OM Out of memory
14 UL Undefined line
16 BS Bad subscript
18 DD Redimension Array
20 /0 Division by zero
22 ID Illegal direct statement
24 TM Type mismatch
26 OS Out of string space
28 LS String too long
30 ST String too complex
32 CN Can’t continue
34 UF
36 FD Faulty data
38 AO File already open
40 DN Drive number
42 I0 Input/Output Error
44 FM Wrong File Mode
46 NO File not open
48 IE Input past EOF
50 DS Direct statement
128 NR Not Ready
130 SK Seek
132 WP Write Protect
134 RT Record Type
136 RF Record Not Found
138 CC Cyclic Redundancy
140 LD Lost Data
142 BT Boot
144 IV Invalid Directory
146 FD Directory Full
148 DF Disk Full
150 FS File Spec.
152 PT Protection

61

154 FE Read past EOF
156 FF File Not Found
158 FE File Exists
160 NE Non-existent
162 TF Too Many
164 PR Parameter Open
166 ??

62

INDEX

 Page No.
AUTO command 21,24
BACKUP command 11,12,25
Backup files 9
BAK filetype 6,9
BAS filetype 6,7
BEEP command 20,26
BIN filetype 6,9
Binary files 9,46,53
BOOT command 22,27
Cassette programs 5
CHAIN command 7,8,28
CLOSE command 17,29
COPY command 9,10,30
CREATE command 14,3 1
DAT filetype 6,13
Data files 13
DEFD (definition) 5
Deleting files 10,45
DIR command 6,32
Directory of files 6,32
Disk, Backup 11,12,25
Disk, Formatting 5,34
Disk, Free spac~ 6,12,32,41
Disk, Full 10
Disk, Initialising 5,34
Disk, Inserting 4
Disk, Type 4
DOS, Booting 22,27
DOS, Connecting up 4
DRIVE command 5,33
Drive number (in filename) 10
Drive number, selecting 5,33
DSKINIT command 5,34
End of file 17,18,35
EOF function 17,18,35
ERL function 20,36
ERR function 20,37
Error Codes 19,20,37,60

63

ERROR GOTO command 20,38
Exchanging variable values 21,55
EXEC default address 8,9,46,53
File-length 7,12,32,48
Filenames 6
Files, backup 9
Files, binary 9,53
Files, copying 9,30
Files, data 13,14
Files, deleting 10,45
Files, equivalent names 9,10
Files, incomplete 10
Files, list 6,32
Files, merging 11,49
Files, open 17,29
Files, protecting 11,50
Files, renaming 9,51
Files, transferring 10,30,51
Filetypes 6
FLREAD command 14,16,17,39
FOR parameter 14,15,16,39,40,43
Formatting Disks 5,34
FRE$ function 19,42
FREAD command 13,14,15,16,17,18,40
FREE function 12,41
FROM parameter 14,15,16,39,40,43
FWRITE command 13,14,15,16,17,43
Garbage collection 19,42
HIMEM function 19,44
Indexed records 16
Initialising disks 5,34
KILL command 10,45
Line numbering, automatic 21,24
LOAD command 7,46
LOC function 15,47
LOF function 12,48
Machine code files 8,9,46,53
MERGE command 10,11,49
PROTECT command 11,50
Protection 11,50
Random Access 16

64

Read pointer 15,17,29,35,39,40,47
RENAME command 10,51
RUN command 7,8,52
SAVE command 6,9,53
Sectors 18
[SHIFT] [@] 6
SREAD command 18,54
String space, free 18,19,42
SWAP function 21,55
SWRITE command 18,56
Tracks 18
VERIFY command 12,57
Video RAM 5
WAIT command 20,21,58

Printed by Cleglen Publishing Ltd., Cardiff Cleglen 83—C4507

http://www.dragondata.co.uk

