

Using Floppy Disks
with the
Dragon

Microcomputer

Justin Johnson/Keith Davis

A Cumana/Premier Publication

© Justin Johnson/Keith Davis 1983

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise. Without the prior
permission of Premier Microsystems Limited and Cumana
Limited.

Published by

Premier Microsystems Ltd, Cumana Ltd,
208 Croydon Road, Unit 1, The Pines Trading Estate,
London SE20 7YX. Broad Street, Guildford,
England. Surrey GU3 3BH, England.

Dragon is the registered trade mark of Dragon Data Ltd.
Delta is supplied by Premier Microsystems Ltd.

British Library Cataloguing in Publication Data

Johnson, Justin
 Using Floppy Disks with the Dragon microcomputer
 1. Dragon (Computer) 2.Computer storage devices
 I. Title II. Rihan, Peter III. Davis, Keith
 001,64'42' QA76.8.DI

ISBN 0 9508762 2 4

Typeset and printed in Great Britain
at FD Graphics, Fleet, Hants.

Contents

Introduction to Data Storage 1
 Faster Access 1
The Floppy Drive 2
 Standards 3
 Diskettes 3
 Density & Capacity 6
 Directory Track 6
 Ground Rules 6
Setting Up 8
 Other Types 8
 The Termination 9
 The Drive Cable 9
 Plug into the Micro 9
Introduction to Delta 10
Getting Started 13
 Connections 13
 Down to Work 14
Delta Keywords 17
 SAVE 17
 SAVEM 18
 LOAD 19
 LOADM 20
 RUN 20
 RUNM 21
 CHAIN 22
 APPEND 23
 DIR 23
 INIT 24
 CONFIG 25
 KILL 26
 ASSIGN 27
 VERIFY 27
 SELECT 28
 COPY 29
 BACK UP 29
 CREATE 30
 FLUSH 31
 OPEN 32
 CLOSE 32
 FILES 33

 END# 34
 RESTORE# 35
 DIM# 36
 IF EOF(N) THEN 37
 (LINE)INPUT# 38
 PRINT# 39
 FIND# 40
 BUILD 41
 DO 42
 BOOT 42
Record Specifiers 43
Machine Code Files 44
Drive Selection 45
Program Files 46
 Loading and Running 46
 Storing Programs 47
Data Files 48
More on Serial Files 51
Random Access Files 55
Indexed Random Access Files 59
Transfer of Programs from Tape to Disk 62
Transferring of Machine Code Programs 63
Transferring of Cartridge to Disk 63
Delta – Quick Syntax Reference 64
Error Messages 65
Delta Memory Map 66
Filenames 67
File Planning Summary 68
Delta Disk Cartridge Pin Connection 68
The Switchable Drives 69
 The Odd One Out 69
 Switching Down 69
 Track Width 69
 Possibilities 70
 Precautions 70
 Maintenance 70
 Keep out Rubbish 71
Half Height Drives 71
 Head Loading 72
 Head To Select 72
 For and Against 72
 Settling Time 73

 Self Loading 73
 Multiplexing 73
 The Right Way 74
 Drive Select 74
 Another Terminator 74
 Fixed Terminators 74
 Different Links 75
 Rounding Off 76
 Final Comments 77
Points to Note 77
 Care of Diskettes 78
 Write Protection 79
Problems – Observations - Help 79
 Problems 79
 Observations 80
 Help 80

Introduction to Data Storage
This book has been written with the newcomer in mind and is
based around the DRAGON Microcomputer fitted with the DELTA
Disk cartridge.

There are a number of different data storage devices that are
needed for the efficient operation of all computers whether they be
large scale main frames or micro computers. There is the ROM or
Read Only Memory, this holds fixed data which cannot be altered.
This data is usually the program which holds the BASIC
interpreter. It also tells the microprocessor how to look after such
things as keyboard entry and how to handle the data. Then there is
the RAM or Random Access Memory, this usually holds the
current running program and its variables. As the name implies,
data can be stored or retrieved in a number of ways. Programs are
normally loaded into the RAM area as they are needed. When a
new program is required it is loaded into the same RAM area and
overwrites the old stored program. It can only hold data whilst the
computer is turned off then all data and programs in the RAM are
lost and only that data which is fixed into the ROM is kept. There
are other types of memory whereby the program data and files can
be downloaded before turning the computer off. One of these is the
punched tape on which most of the early computers used to store
and load their programs. Punched tape again holds fixed
information and it cannot practically be altered. Then there is
magnetic tape. This type of storage media has the advantage that
data can be stored onto magnetic tape and filed away. The data on
the tape can also be changed when required to hold a new
program. It has several advantages over the punched tape. With a
Personal Computer this convenience extends to being able to use a
normal cassette recorder for long term storage and retrieval of
programs and data.

Faster Access
Whether you have just started in computing or have had the use of
a Micro for some time, sooner or later you will come to feel that the
use of a tape recorder to save and retrieve programs can become
frustrating. Initially, this tape recorder was just fine and allowed
you to save and retrieve your brand new programs. But now you
have a larger collection of software and find yourself spending
rather a long time searching for the latest version of your Home

1

Management package. This normally happens when your program
library grows to an extent whereby finding a particular program
halfway down a tape is a time consuming business. This seems
especially true just as you want to show a friend your latest
masterpiece of programming power.
 It is at this point that you begin to wish you had bought a better
storage and retrieval system. This is where the Floppy disk drive
fits the bill so nicely. With data transfer rates a couple of hundred
times faster than cassette. Improved reliability in loading and
saving programs and a “Directory” of diskette contents available to
you in a few seconds rather than several minutes.
 With the cost of Floppy disk drives now within the reach of most
Micro owners and the promise of lower prices to come, it seems
only right that we try to de-mystify the operation and facilities
offered by a typical disk based system and its associated D.D.S.
(Short for DELTA Disk System).

The Floppy Drive
Figure 1 shows a typical Floppy disk drive and the following points
should be noted:-
{a} Indicator lamp illuminated to show that the drive is active and
busy.
{b} Drive door and slot for inserting floppy diskette. This door is
normally closed after inserting the diskette. It engages the hub or
clutch of the drive into the hole of the floppy diskette. Note the way
the diskette is fitted into the drive. The diskette label is uppermost
and on the rear edge. The small notch on the left is the write protect
notch and if covered by a small adhesive tab will prevent the drive
electronics from storing information onto the diskette. This is
useful if you wish to avoid accidental erasure of certain diskette
data.
 See Figure 2 for explanation of the floppy diskette.
{c} Control cable. This carries the signals needed to operate the
drive. It is through this cable that all communication between the
disk drive and the computer are carried out. It must be inserted the
correct way round. If the cable is reversed then normally this will
result in the drive motor and electronics staying permanently in
the “ON” condition. If a diskette is in the drive at that time then
one or more of the tracks will be totally erased.

2

{d} ON/OFF switch. It is normal practice to power all external
devices prior to applying power to the computer. Always wait till
the entire system is powered before inserting a diskette into the drive
and be sure to remove it before switching anything in the
system OFF.

Standards
There are two normal standards for 51/4" disk drive capacity. These
are 40 track and 80 track drives. The only difference between 40
and 80 track drives of the same make are internal and transparent
to the user. The 40 track drive lays down its magnetic tracks at a
pitch of 48 tracks per inch or as is commonly known 48 TPI, whilst
the 80 track drives lay down the tracks at 96 TPI, exactly half the
track width of the 40 track drive.

The Diskette
When a diskette is first used it has to be Formatted or Initialised.
This is a program that lays down magnetic circular tracks onto the

Figure 1. Floppy Disk Drive.

3

Figure 2. Typical Floppy Disk.

4

Figure 3. How the disk surface is laid out after format.

diskette and then segments each circle into a number of sectors.
Each one of these sectors has space to store 256 bytes of
information. In the case of the Dragon Micro fitted with the DELTA
Disk cartridge, which normally operates in the DOUBLE DENSITY
mode, it lays down 18 sectors per track. See Figure 3. That is equal
to a storage area of 4,608 bytes on each track. Therefore a 40 track
drive will have a formatted capacity of 40 times 4,608 or 184,320
byte of storage area. As I track of the Diskettes is reserved for the
Directory, a total of 179,712 bytes are available for program
storage. The storage area available on an 80 track drive, less the
Directory, is equal to 359,424 bytes.

For the sake of convenience the drive storage capacity for the
Dragon Micro is normally given to the nearest 100k of a formatted
disk. Therefore a 40 track single sided drive is quoted as being
200k capacity whilst the 80 track single sided drive is quoted as
being 400k and finally the 80 track double sided is known as a
800k drive. These figures are assuming single units. If the drives
are in a dual packaged unit then the above figures are doubled.

5

Density and Capacity
Note that the previous calculations are made for single sided
DOUBLE DENSITY 40 or 80 track drives. The 80 track drive is
simply a higher capacity drive. The recording density remains the
same. Even if the user goes to double sided drives, the Dragon Micro
normally does its reading and writing in DOUBLE DENSITY. With
a SINGLE DENSITY system the computer usually uses only 10
sectors per track. To imply double density means that the number
of sectors per track has been increased from say 10 sectors per
track to 18 or 20 sectors per track. The DELTA disk cartridge has
been designed to operate at 18 sectors per track. It is a common
mistake to think that double density implies double the amount of
tracks. It is the host computer that decides which density it will
operate in. Most of today's modern floppy disk drives will handle
either density and no setting has to be done by the user. It is a
function completely controlled inside the computer.

Directory Track
As mentioned above, one of the tracks is used for the directory.
This directory is used for the management and location of the
programs that are stored on the diskette. When a program, or file as
it is more commonly called, is saved on a floppy drive then an
automatic directory entry is made along with the file name that
was given to it. This entry contains the track number and the sector
where the computer can find the start of the file. Secondly it
contains the number of sectors that the computer has to read into
memory when it loads the program. The DELTA Disk System looks
after the Disk drive and is able to find all spare sectors on a diskette
when it is required to store a file. It does this by moving the
READ/WRITE head via a stepping motor inwards and outwards
across the rotating diskette. On a single sided disk drive the
Read/Write head normally operates on the underside of the
diskette. Whilst on a double sided drive both sides of the diskette
are used. No user intervention is required when saving or loading
files from a floppy disk drive. Certainly there is no rewind or
setting to record as would be found on a cassette tape storage
system.

Ground Rules
The type of floppy diskette used on the Dragon Micro is more

6

commonly known as a mini-floppy. This is a 5¼" diskette made
from a mylar coated circular disk enclosed in a stiff outer
sleeve. The mylar coated diskette rotates inside the sleeve at about
300 RPM.
 The word floppy is usually reserved for its larger brother the 8"
disk.
 Each box of diskettes normally comes with a set of diagrammatic
instructions of what to do and what not to do. Here are a few Do's
and Dont's. Never write on the diskette sleeve or label attached to
the sleeve. Always mark up the label BEFORE placing it on the
diskette sleeve. Never place the diskette within any magnetic field
like a loudspeaker, mains transformer, moving coil meter etc or
anything that you suspect to be magnetic or that could otherwise
damage your diskettes.
 When the diskette is not in use or in the drive then return it to its
protective jacket. Never. leave an unprotected diskette on any
surface where It might pick up damaging particles of dust or grit.
Grit in particular can cause serious damage to the precision
Read/Write head used in the drive. Avoid excessive bending of the
diskettes and if possible keep them in the rigid plastic diskette
holders that can be obtained from most computer shops. Do not
touch the exposed recording surface of the diskette. Finally do take
care to keep your diskettes away from excessive heat or cold
 In selecting the right type of diskette to use always choose a
branded type of diskette that is certified for the number of tracks that
you wish to use them on. Users of 80 track drives can expect to pay
slightly more for certified 77/80 track diskettes. If you change from
40 to 80 track drives at any time then do not expect all your 40
track diskettes to reformat in the 80 track drives.
 If one of your diskettes gets damaged in any way either physically
or magnetically then try to copy the files of that diskette one at a
time onto a known good formatted diskette. You should at least
save most of your files and only those in the damaged area will be
lost. If you have any really valuable software then it is up to you to
keep backup copies of those diskettes in a safe place for such an
eventuality.
 Instructions on Initialising, Copying and Backup are given
elsewhere in this book.

7

Setting Up
Now that we have had a brief look at the disk drive it is time to
connect it to the host computer. In this case it is the DRAGON
32/64 computer fitted with the DELTA Disk System. Firstly, check
that your drive or drives are addressed correctly as drive 0 and
drive 1. This addressing can be checked in the case of Cumana
drives by removing the drive cover and looking at the DIL switch
that is located towards the rear right hand edge of the drive
electronics PCB. The following switches should be forward (ON)
for drive 0. This is normally called the boot drive. Switches
marked DS0, HS and MX. On a dual unit the second drive will
have switches DS1, HS and MX forward. All other switches should
be made towards the rear of the drive or (OFF). In this
configuration only the head of the selected drive will load when
disk access is required. If it is desired to have all the heads loaded
when the motors start up then the entire switch block should be
removed and refitted one space to the left, on each drive. The
following switch setting will then apply. Drive 0 will have DS0,
HM and MX forward. Drive 1 on a dual drive system will have
DS1, HM and MX forward. It is fairly easy to see if the settings have
been made correctly. On a single drive system there will be two
switches forward and four switches backwards whilst in a dual
drive system there will be three switches forward and three
switches backwards on each drive. See Figure 4 for Cumana
switch settings.

Other Types
Other types of drives use a similar convention and the guidelines
given for the Cumana drives should help you get the correct
settings even if the drive uses links that have to be cut. Don't forget

Figure 4. Mounting Position of the Switch.

8

that if the links are mounted in a DIL socket than it is quite easy to
change the links for a DIL switch.

The Termination
A final drive check should be made on the termination resistor
pack. This looks something like a small integrated circuit and in
the case of the Cumana drives is normally white in colour and is
mounted in another DIL socket. It has the word BECKMAN written
on it. There should only one terminating resistor fitted to the drive
assembly whether you have one or two drives. If you have a dual
drive assembly and each drive has one of these resistor packs then
remove the resistor pack from the drive that will be closest to the
computer leaving the resistor pack in the drive that will be on the
end of the cable.

The Drive Cable
Now fit the control cable to the drive. It is a 34 way ribbon cable
with three connectors on it. Two of these connectors are close to
each other at one end and are of the edge connector type. Fit the
end edge connector onto the drive with cable coming away from
the bottom of the connector. In the case of a single drive it is just
possible to fold the cable so that the other connector is held within
the case. With the dual drive ensuring that the orientation of the
cable is kept the same. A red line runs alongside one edge of the
cable to assist in this. There is a groove at the back of the drive
housing where the cable may rest in as it exits out. When the lid is
refitted to the assembly you will find that the cable is not crushed
by the lid.

Plug Into The Micro
Now fit the other end of the cable onto the exposed section of
the DELTA Disk cartridge. The cable plug is fitted to the edge
connector with the cable going downwards and away from the
pack. This is a 34 way connector and care must be taken to ensure
that no force is used to fit it. It is possible to mis-align the connector
and damage the printed circuit of the DELTA cartridge. Make sure
there are no bent pins on the plug and that the edge connector is
clean. Having successfully connected the drive to the Micro it is
now time to test it out.

9

Introduction to Delta
The DELTA Disk System has been specially written by Premier
Microsystems for use with the Dragon Microcomputer.
 DELTA is suitable for all current types of popular floppy disk
units, i.e 5.25 inch. A Dragon equipped with DELTA can cope with
any of these units or even a mixture of different drive types. The
Premier DELTA cartridge contains an advanced disk controller
circuit and an 8K ROM containing the DELTA Operating System.
The use of a ROM means that very little of the Dragon's valuable
RAM is needed by the disk system. DELTA uses only 1.8K of user
RAM, unlike some other disk operating systems which require
10 - 20K!!
 DELTA has been written to be fully integrated with the Dragon's
excellent BASIC. All existing BASIC words continue to work in the
normal way. DELTA adds over 30 new or extended words to the
BASIC vocabulary. These new words are used just like any other
BASIC commands. In addition to the new facilities and commands
DELTA provides comprehensive Disk Error messages. These are
given in plain English making debugging easier.
 The most advanced feature of DELTA is the data file handling.
DELTA can handle up to 8 files on up to 4 separate drives
simultaneously. These files can be Serial or Random Access (with
variable record length). The file handling is done using simple
BASIC commands.
 This manual is designed to help you make the best use of the
disk unit supporting your computer. If you already have a good
idea about disks and backing stores, please skip ahead a few
paragraphs. If not, please read this section carefully, plus the two
sections entitled POINTS TO NOTE and GETTING STARTED
before experimenting.
 Disks are used for the long term storage of programs and data.
This type of storage is known as a 'backing store' in computer
parlance. The computer's internal memory or RAM (Random
Access Memory) has two major limitations - it loses all its
information once the computer is switched off and even the largest
RAM could not hold simultaneously all the programs you will ever
want to use!
 The function of the RAM is to hold the program currently in use,
while the backing store saves all other programs and program

10

data. We can also use our backing store to pass information between
programs by using data files.
 Backing stores come in a bewildering number of forms: tape
cassette, cards, paper tape, bubble memory, magnetic floppy tape,
and various types of magnetic disk. Disk systems, although not the
cheapest form of storage, are extremely fast in operation and easy
to use.
 The outer cardboard cover of a disk protects the inner revolving
disk. The inner disk is made of mylar and coated with a very fine
high quality magnetic material, similar to a conventional tape.
NEVER touch the surface of the inner disk. The disk coating stores
information as magnetic impulses which can be read by the disk
drive. This type of storage is very reliable, provided the disks are
properly stored and treated. See Points To Note for what you
should and shouldn't do with disks - especially if this is your first
experience of disk operation.
 The microdisk contains a similar recording media, but is
enclosed in a strong plastic case. A safety catch ensures that the
internal disk cannot be handled!

The drive lays down information on concentric rings on the
surface of the disk. The outermost ring is known as track zero and
the tracks are then numbered inwards towards the centre of the
disk. The actual number of tracks used varies from drive to drive.
Each track is subdivided into sectors, the quantity again depending
on the system in use.
 The computer itself controls the disk unit using a special internal
program known as the DOS (Disk Operating System). This
program is supplied in your system cartridge. DELTA allows the
user to give simple, easy to remember instructions to make full use
of the disk. The DOS automatically finds programs, information or
free space on the disk - the user does not need to worry about
tracks or sectors.
 Whenever a program or data information is put onto a disk, it is
given a filename. The DOS maintains a directory on each disk
which remembers which tracks hold which program. The 'DIR'
command will display this disk directory onto the screen.
 The DOS also gives the user a wide range of utility or
'housekeeping' commands which allow files to be deleted, re-
named etc, should the need arise. The most important feature of
DELTA is its ability to manipulate up to eight different data files on
up to four drive units simultaneously. These files can be serial or
random access or indexed.

11

DELTA supports six types of fi1e:-
1. Program
2. Serial
3. Random
4. Indexed
5. Machine Code
6. Executive
Detailed instructions for their use can be found in later chapters,
but a short description of each below, explains their general
purpose.
 A program file is used to store programs written in a high level
language such as BASIC or Assembler Source Code. Once a
program has been written, it can be stored on the disk using the
SAVE command. The same program can be recovered for use at a
later date using the LOAD, RUN, APPEND or CHAIN commands.
Programs can be APPENDed, renamed or even deleted using the
various
DELTA utility commands.
 A serial or sequential access file is used to hold data, either
figures or text or both. In this type of file, information is recorded
and recovered in a sequence (hence sequential file). To find one
item of data it is usual to read the file from the start until the
required item has been located. This type of system is very easy to
program and makes efficient use of disk storage, but it does have
its disadvantages as will be discovered later.
 Random Access files reserve a space on the disk for each item or
group of items of data. These spaces are known as 'records'. This
system of filing allows particular items of data to be picked up
directly from the disk, without reading any previous data, allowing
much faster recovery of information from the disk. Unlike many
other DOS systems, DELTA allows the user to change the length of
these records using a simple DIM statement.
 Indexed files are a combination of serial and random access files.
A short serial or index file is used to locate larger blocks of
information on big random access files. This is a particularly
useful technique when large files are being used. The system is
similar in concept to a card index in a library, but hundreds of
times faster and more accurate!
 For many applications, programs written in Machine Code are
more suitable than BASIC. DELTA itself is an example of a large
machine code program. The LOADM and SAVEM commands
allow machine code programs to be moved into and out of the

12

computer memory. These programs are stored in machine code
files.
 The Executive file is used to produce a logical order of executing
programs once the relevant disk has been 'booted'. The BUILD ...
DO sequence is used to achieve this.
 At first sight, this may all seem rather confusing, but anyone
who has already learnt BASIC should have little trouble with the
new instructions needed to use DELTA. The BASIC we use is
similar to that used in many other popular machines, although the
file handling commands vary from machine to machine, with no
set 'standard' file handling words.
 We would advise you to work through the relevant chapters and
examples in this manual. You will soon be able to write your own
file programs. Experiment with your system but one strong word
of warning!

DO NOT EXPERIMENT WITH YOUR MASTER
DEMONSTRATION DISK

 Make copies (see BACKUP) and experiment with them!
If this is your first experience of disk operations, read POINTS TO
NOTE and GETTING STARTED before experimenting.

Getting Started

Please read this section carefully before using your DELTA system.
Do not make any connections to either the Dragon or the disk
drive with the Dragon or drive turned on. Failure to observe these
precautions may cause damage to the entire system.

Connections

Connect the DELTA cartridge to your disk drive(s) using a 34 way
ribbon cable. This may necessitate removing the drive cover,
depending on the design of drive in use. Make sure that the drive
cover(s) is/are replaced properly on the drives before powering on.
 Now carefully insert the cartridge into the DRAGON's cartridge
slot, situated on the right hand side of the machine. Open the door
of the disk drive but DO NOT insert a diskette yet.
 Connect the drive and your DRAGON to the mains. Turn on the

13

drive, then the DRAGON, in that order. The screen should clear
and display the start-up message:-
DELTA SYSTEM FOR DRAGON 32
BY J G JOHNSON AND P J RIHAN
<C> 1983 PREMIER MICROSYSTEMS
PUT DISK IN 'A' <PRESS KEY>
 The displayed message may vary slightly from the one above.
 If the message does not appear, turn off and check all
connections carefully, especially the orientation of connecting
cables (see section on PROBLEMS). Do NOT insert a diskette into a
drive until you have succeeded in displaying the start-up message.
 Taking great care not to touch the brown surface of the diskette,
insert the demonstration diskette into the drive with the title label
facing the direction of the closing drive door and the oblong slot in
the diskette nearest the drive (see diagram). Now gently close the
door.
N.B. Never switch the disk drive or the Dragon on or off with a
diskette resident - danger of losing entire diskette contents!
 Next press any key. The drive will start up and automatically run
the INTRO program. You have now 'booted' the disk!
 Your DELTA system is now ready for use. Overleaf are some
example operations to ease you into the DELTA Disk System as
painlessly as possible! Note that the '<ENTER>' symbol used in
this manual refers to the need to hit the ENTER key.

Summary
1. Connect cables, plug in DELTA cartridge.
2. Switch on drive(s) then DRAGON.
3. Boot disk.
4. Always INITialise a new disk before use. (DO NOT INITialise
 your demo disk!)

Down to Work!
The DRAGON will now obey all the new disk commands in
addition to all the BASIC words you have been using up to now.
Type:-

DIR <ENTER>

and assuming there is a DELTA demonstration diskette in the drive
and the drive door is closed you should see a display of the diskette

14

contents showing filenames, file types and lengths of the various
demonstration files supplied.
 To run the introduction program type:-
RUN "INTRO" <ENTER>
 The program 'INTRO' will now load and start to run, displaying a
welcome message followed by a DELTA system logo and signal.
After a few seconds a menu will appear:-

1. UNLOCK SYSTEM
2. DISK DIRECTORY
3. DISK DICTIONARY
4. DISK PURGE
5. DISPLAY DELTA LOGO.
CHOICE?

An explanation of each choice.
1. NEWs the workspace and clears the screen ready for program-
 ming.
2. Prints a directory of the demonstration diskette.
3. Enter one of the new or changed BASIC words which DELTA
 gives you and a brief resume of its function is displayed.
4. Can be used to delete files from the diskette - use with care and
 don't use at all if you are unsure!
5. Displays the DELTA logo.
 Try selecting numbers 2, 3 or 5 from the above menu. All will
return you to the above menu after execution. When you have had
enough select 1 and continue below.
 Two file-handling programs have been included on the diskette.
PINPUT is used to create and add names to a file of telephone
numbers.
NUMBER is used to search the file built by PINPUT.
Type:-
LOAD "PINPUT" <ENTER>

to LOAD 'PINPUT' into the workspace.
 This program uses Random Access files to hold data on names
and telephone numbers. Each time the program is run the file is
extended, adding new names to the existing list. If you ever wish to
erase the file and start again type:-

FLUSH"PDATA"

PDATA is the name of the file which holds all the actual names and

15

numbers - PINPUT is merely the creation program, it does NOT
store the information to disk under that filename.
Type:-
'RUN <ENTER>'

and add some names and numbers to the short list supplied. You
may also like to LIST the program to see how it works – copious
REM statements have been included to assist analysis.
Next type:-
LOAD"NUMBER" <ENTER>

NUMBER searches the file (PDAT A) for a name or number. If any
part of the name or number is given, NUMBER can find the name
and number that corresponds to the information requested. If you
type:-
SMITH <ENTER>

the program will list all occurrences of SMITH, whether plain
SMITH, SMITHE or ARROWSMITH. If you enter 698 it will list
every phone number containing those consecutive numbers. Try
entering SON to find how many of the names contain it – eg.
Jackson, Johnson, Attsonton.
 The program can even deal with uncertain spellings – you
simply type an asterisk ,*' for every uncertain entry. For example:-
J***SON <ENTER>

would find JOHNSON or JACKS ON as the search will ignore the
starred portions.
 LIST to see how the program works - you will find it is
surprisingly short due to DELTA's powerful file-search com-
mands. REM statements explain in detail what is going on.
 These demonstration programs, plus the numerous examples
will give you some ideas on the possibilities of disk data files. Start
learning DELTA by typing in some of the examples in this manual,
then modify them to your own requirements. File handling is
extremely easy using DELTA, but you will need some practice,
especially if your BASIC knowledge is weak. Don't be dishear-
tened by silly mistakes.

REMEMBER
> > > IF ALL ELSE FAILS, READ THE MANUAL!! < < <

16

Note!!
All fresh disks MUST be initialised before DELTA can use them.
See the INIT command summary for how to format a disk.
Before
trying out some of the examples in this manual, you will need a
small supply of disks.

Delta Keywords

Overleaf begins an explanation of DELTA's new command words.
They have been arranged into logical groups, as follows:-

BASIC WORDS
SAVE LOADM CHAIN
SAVEM RUN APPEND
LOAD RUNM

DISK WORDS
DIR VERIFY FLUSH
INIT SELECT OPEN
CONFIG COPY CLOSE
KILL BACK UP FILES
ASSIGN CREATE

FILE WORDS
END# IF EOF (N) THEN PRINT#
RESTORE# (LINE)INPUT# FIND#
DIM#

EXECUTIVE WORDS
BUILD DO BOOT

SAVE SAVE
Function
BASIC programs are saved on to a disk file using this command. If
the named file does not already exist a suitable file will be created
by the system. If a file already exists, the program will overwrite
the original; this will not happen if the existing file is protected.

17

 The file name may he up to eight characters long and should
start with a capital letter (See FILENAMES). In a multi-drive
system the file name may he prefixed with a drive specification. If
this is omitted the system uses the currently selected drive.
 An error message is generated if there is no disk space or if the
existing file is of the incorrect type.

Syntax
SAVE "NAME"
SAVE "B:NAME" - on a multi-drive system

 B: = drive specification.

Examples
SAVE "EXAMPLE"
SAVE "A:EXAMPLE"

Comments
Used for BASIC programs - see SAVEM for machine code. LOAD
recovers the program. For output to cassette use the CSAVE
command syntax as normal.

Associated Keywords
LOAD CHAIN APPEND
RUN CLOAD CSAVE

SAVEM SAVEM
Function
Machine code and data in memory are saved using SAVEM. In the
case of SA VEM the area of memory must he specified. The rules
concerning file names and overwriting of files are the same as
SAVE.

Syntax
SAVEM”NAME”,A1,Z1 A1 = start address,

Z1 = end address.
Examples
10 SAVEM”SCREEN”,&H0400,&H05FF saves text screen to disk
20 CLS
30 LOADM”SCREEN” restores text screen
SAVEM”B:BASIC.ROM”,&H8000,&HBFFF transfers BASIC

interpreter to disk

18

Comments
Start and end addresses may he specified in decimal or hexadecim-
al notation. It is usually easier to use Hexadecimal addresses. i.e.
&H---- in the SAVEM command. In addition to saving M/C this
command can be used to store graphic screens for later use.
LOADM retrieves the SAVEMed code. Use SAVE for BASIC
programs.

Associated Keywords
LOADM RUNM EXEC
CLOADM CSAVEM

LOAD LOAD
Function
To LOAD a BASIC program from disk to memory. The file name
may contain an optional drive specification if needed in a
multi-drive system.

Syntax
LOAD "NAME"
LOAD "C:NAME"

Examples
LOAD "INTRO":RUN
LOAD "A:NUMBER"

Comments
Only used for BASIC programs, see LOADM for M/C. Loading
BASIC programs from disk into the computer automatically erases
the resident program. An error message will he generated if the file
does not exist or if the file is not a BASIC program.
 To transfer a program from cassette to disk storage, simply
CLOAD from cassette then SAVE"xx" to disk. You will find a
separate chapter on cassette to disk transfer later in this manual.

Associated Keywords
SAVE CHAIN APPEND
RUN CLOAD CSAVE

19

LOADM LOADM
Function
Recovers M/C and data from disk and returns it to the memory.

Syntax
LOADM "SCREEN"
LOADM "C:CODE",ADDR optional LOAD address
LOADM "MCODE",&H5000 loads code to $5000 regardless

 of original location of code.
Examples
10 SAVEM "SCREEN",&H0400,&H05FF
20 CLS
30 LOADM"SCREEN"
40 LOADM"SCREEN" ,&H0500

Comments
Can be used to move machine code into different areas of memory.
Unless otherwise specified the file is returned to its original
position in memory. If the data is required in another position this
is specified after the file name.
 Error messages are generated if the file does not exist or if the
wrong type. Drive specifications may be included in the file name.
LOAD is used for BASIC programs.

Associated Keywords
SAVEM RUNM EXEC CLOAD CSAVEM

RUN RUN
Function
Loads then runs a BASIC program; see LOAD for details of
loading. The program may be started at a specified line number,
but NOT from a program line - immediate mode only.

Syntax
RUN"NAME"
RUN"D:NAME"
RUN"NAME"100 runs NAME for line 100

Examples
RUN"INTRO"

20

100 IF F$ ="ACCOUNT" THEN RUN "ACCOUNT"
110 IF F$ ="STOCK" THEN RUN "STOCK"
120 IF F$ ="PAY" THEN RUN "PAY": ELSE PRINT "ERROR":
 RUN

Comments
A useful command when using a suite of related programs;
functionally the same as 'LOAD "NAME": RUN'. Can be used in
the immediate mode to LOAD and RUN a program from disk or
within programs to call in different programs; this is useful in
menu-driven programs. The RUN from a line number facility can
only be used directly from the keyboard, NOT from program.

Associated Keywords
LOAD APPEND CHAIN SAVE CSAVE CLOAD

RUNM RUNM
Function
Loads and executes a machine code file. An optional start address
may be specified. The code is executed from its beginning (see
Comments).
 For file name rules and errors - see SAVEM and LOADM.

Syntax
RUNM"CODE"
RUNM"C:CODE"

Examples
RUNM"ENCOD9"
RUNM"MENU2",ADDR optional LOAD address

Comments
Execution of the loaded file will ALWAYS commence at the start of
the program - put a JMP at the beginning of your program if you
wish to start elsewhere. Routines should be modified to start from
the lowest address saved. If this is not convenient use the
combination LOADM" NAME": EXEC&H----.

Associated Keywords
LOADM SAVEM EXEC CSAVEM CLOADM

21

CHAIN CHAIN
Function
The chain command allows the variables in one program to be
carried over to the next program. Normally when a fresh program
is loaded or run the variables from the previous program are lost.
A CHAINed program loads and runs but retains all the variables
(numeric, string and array) from the previous program. This
permits the use of programs that are too big for the computer's
memory. The large program can be sub-divided into smaller units
and variables passed between programs using CHAIN instead of
RUN.
 A small modification is needed to make sure that string variables
are passed correctly.
 When defining a string in a LET (or implied LET) the following
syntax should be used:
A$=" "+"ABC" instead of A$="ABC"
or D$(K)=" "+"FRED" instead of D$(K)="FRED"
or LET K$=" "+"CHAIN" instead of K$="CHAIN"

Note that user defined functions cannot be carried over between
chained program. This is necessary due to the way in which the
BASIC interpreter stores strings in memory. No other changes are
required in the programs. No modifications are needed unless the
strings are to be used by a succeeding program.

Syntax
CHAIN"SECOND"
CHAIN"B:PART2"

Examples
990 IF A$="A" THEN A$=" "+ACCOUNT
1000 IF A$="ACCOUNT" THEN CHAIN "ACCOUNT"
1010 IF A$="PAY" THEN CHAIN "CASH"
1020 RUN"MENU"

Comments
Allows very long programs to operate in a limited amount of
memory. Remember to modify all string definition statements and
avoid user defined functions if required (see above).

Associated Keywords
RUN LOAD SAVE APPEND CLOAD CSAVE

22

APPEND APPEND
Function
Merges the program in the workspace with a program on the disk.
Care must be taken with line numbers. RENUMBER should be
used to prepare programs before APPENDing. In the event of two
identical line numbers the incoming disk program takes prece-
dence. More than one program may be appended. The same rules
regarding names etc. apply as in LOAD.

Syntax
APPEND"NAME"
APPEND"C:NAME"

Examples
As syntax

Comments
Watch out for duplicated line numbers. APPEND is a slower
function than LOAD so a long disk program may take some time to
merge.

Associated Keywords
RUN CHAIN LOAD SAVE CSAVE CLOAD

DIR DIR
Function
Prints the directory contents of a drive onto the screen (or printer -
see below). The printout halts after 14 lines, continuing after any
key depression.
 The listing gives the file name, file type and length in domains. 1
domain = 256 bytes. A * by the file name indicates a write
protected file. At the end of the listing the screen shows the amount
of free space on the disk. An optional drive specification may be
given.

Syntax
DIR lists current drive contents
DIR A lists drive A
DIR C lists drive C

23

Examples
DIR
NAME TYPE LENGTH
INTRO *BAS 18
NUMBER BAS 13
PDATA DAT 50
PINPUT BAS 5
OK

Output to Printer
To output the DIR listing to printer, type the following:-

POKE&H6F,&HFE: DIR

The above command must be on one line as location &H6F is
automatically reset after each BASIC line. DIR syntax on a
multi-drive system is the same as the normal DIR.

Comments
Gives quick clear list of disk contents. Use before writing to an
'unknown' diskette.

Associated Keywords
INIT CONFIG KILL ASSIGN VERIFY SELECT

INIT INIT
Function
Prepares a disk for use or re-use. A fresh disk MUST be initialised
before use. If a used disk is to be utilised the computer will ask:
"DATA FOUND - USE?" Type Y to continue, 'N' or any key other
than 'Y' stops the disk being wiped.

Syntax
INIT initialise disk on default drive
INIT B initialise disk on drive B

Examples
INIT
DISK CONTAINS DATA - USE? Y
OK

24

Comments
A write-protect label will stop a disk being initialised. Software
write-protection is ignored by INIT!
 The INIT process takes about 40 seconds on a standard 5.25"
drive. Error messages are generated if there are problems with the
media. An essential function, but use with great care on old disks.
Be especially careful where 'DISK CONTAINS DATA' message
appears when not expected!

Associated Keywords
CONFIG BACKUP

CONFIG CONFIG
Function
Sets up the system to use different types of disk drive. This
information is stored on the disk by the INIT command. When a
disk is booted or selected the computer resets to the configuration
stored on the disk. The command is normally used before
initialising a fresh disk. If the system only has one drive or all
drives of the same type this command will not be used very often
as in the normal course of events, any system disk will configure
the computer on start up and no further intervention will be
required.

CONFIG needs six parameters:-
1. Drive letter A - D
2. Number of tracks 40 on a standard 5.25",
3. Sectors / track 10 for single density 5¼", 18 for double

density
4. Number of sides 1 single sided, 2 = double sided
5. Step rate 1 = 12 ms

2 = 20 ms
3 = 30 ms†

6. Data Rate D = 250 Kb/s (5.25" Double Density)
S = 125 Kb/s (5.25" Single Density)

 † Seek errors or complete failure to read will occur if you attempt
to use a faster Step Rate than that specified for your disk drive;
always use parameter 3 for Step Rate where you are unsure.

25

Syntax
CONFIG A,T,S,N,R,D

Examples
CONFIG A,40,10,1 ,3,S sets up 40 tracks on

 Single Density 5,25" drive
OK
INIT
OK
CONFIG A,40, 18,1 ,3,D sets up 40 Tracks Double
 Density on 5.25" drive
OK
INIT

Comments
Mainly of use in systems where drives are changed over, not
needed in most cases.

Associated Keywords
INIT

KILL KILL
Function
Deletes files from the disk, unless protected.

Syntax
KILL"NAME"
KILL"B:NAME"

Examples
As syntax

Comments
Use with care. Error messages are generated if the file is not found
or software protected. Drive specifications can be used as a prefix
in the file name. KILLed files cannot be retrieved!

Associated Keywords
DIR INIT CONFIG ASSIGN VERIFY SELECT

26

ASSIGN ASSIGN
Function
Renames and/or changes file protection.
 ASSIGN has two functions which can be used separately or
together. The rename is used to simply change the name of a file.
The protection facility is used to write protect / unprotect a named
file. A protected or sanctified file can be read by the computer but
cannot be over-written. KILL will not erase a protected file. This is
a valuable facility when important programs or data are to be
protected.

Syntax
ASSIGN"OLD", "NEW" changes OLD to NEW
ASSIGN"C:OLD", "NEW" changes OLD to NEW on drive C
ASSIGN"NAME";S Sanctify or 'protect' a file
ASSIGN"NAME";D Desecrate or 'unprotect' a file
ASSIGN"OLD" ,"NEW";S change name and protect

Note commas and semi-colons
Examples
As syntax

Comments
Always protect important program and data files. The command
KILL cannot be used to remove a protected file.
 N.B. ASSIGN does NOT protect against the INIT command!

Associated Keywords
KILL INIT CONFIG VERIFY SELECT

VERIFY VERIFY
Function
Enables or disables the disk verify operation. Normally the
operating system re-reads the disk whenever any data is written to
check that it has been recorded correctly. This gives greater
security to the user as an error message is given if there are any
difficulties.
 The checking process takes a certain amount of time and slows
down the disk access. Disk systems are very reliable and greater
operational speed can be achieved if the checker is disabled. The

27

VERIFY D command turns off the re-read check; it can be restored
by VERIFY E. VERIFY defaults to E.

Syntax
VERIFY D disable disk verification, speed up access
VERIFY E enable disk verification, slow access

Examples
As syntax

Comments
Do not use when handling important data; use in less vital
applications where speed is more important.

Associated Keywords
INIT CONFIG DIR KILL ASSIGN SELECT

SELECT SELECT
Function
Engages the specified drive. Drives are numbered A to D. If an
auto boot disk is in the drive it will boot normally. The specified
drive is homed and reset. This command should be used after a
change of disks.

Syntax
SELECT A selects drive A
SELECT B selects drive B

Examples
As syntax

Comments
SELECT should be used to access the required drive, especially
after you have DIRed a drive other than the one containing your
master program. If DRIVE NOT READY constantly appears,
SELECT A to regain control! It is advisable to use this command
after a change of disks.

Associated Keywords
INIT CONFIG DIR KILL ASSIGN VERIFY

28

COPY COPY
Function
Copies a named file from one disk to another. Although this is
quicker in a multi-drive system it is possible to use a single drive.
The system will prompt the user when to change disks etc. The
original disk is called the "SOURCE DISK" and the new disk is
called the "TARGET DISK".

Syntax
COPY"A:SOURCE","B:TARGET" on a multi-drive system
COPY"A:SOURCE","A:T ARGET" on a single drive system

Examples
COPY"A:FRED","A:BILL" for a single drive
INSERT SOURCE DISK <KEY>
INSERT TARGET DISK <KEY>
OK
COPY"A:FRED", "B:FRED" for multi drives
INSERT TARGET DISK <KEY>
OK

Comments
An easy way to make copies of valuable files. Can be used with a
single drive system, but put a write-protect label over the source
disk! Use BACKUP to copy an entire disk.

Associated Keywords
BACKUP

BACKUP BACKUP
Function
Copies an entire disk onto another disk. Can be used with single or
multiple disk systems. The new disk is automatically initialised
before use. This command is much faster in a multi disk system as
no disk swapping is necessary. In a single drive system prompts
are given to tell the user when to change disks.

Syntax
BACKUP

29

Examples
BACKUP <ENTER>
SOURCE DRIVE? A
TARGET DRIVE? B
DATA FOUND - USE? Y
OK

or
BACKUP
SOURCE DRIVE? A
TARGET DRIVE A
INSERT TARGET DISK <KEY>
DATA FOUND - USE? Y
INSERT SOURCE DISK <KEY>
INSERT TARGET DISK <KEY>

and so on until entire disk has been copied
OK

Comments
ALWAYS ensure there is a write-protect label on the source disk!

Associated Keywords
COPY

CREATE CREATE
Function
Used to create and prepare a serial or random access file. The
length of file is specified on creation. The length is specified in
domains, 1 domain = 256 bytes. The only limit on the size of file is
the space available on the disk.

Syntax
CREATE"NAME" ,N

Examples
CREATE"DATA",48 creates a file 12k long
CREATE"A:HOLD",20 creates a file on drive A 5k long

30

Comments
Error messages are generated if there is insufficient space or if the
name is already in use. The rules on file names are the same as the
SAVE command. Be generous when creating data files or you may
run out of file space. CREATE is not to be used to prepare a space
for a BASIC program on disk - this is done automatically during
SAVE.

Associated Keywords
FLUSH FILES OPEN CLOSE

FLUSH FLUSH
Function
Clears a data file for re-use under the same filename. This
command completely erases a file and data cannot be recovered
from a flushed file. The file may be addressed by name or by
channel number.

Syntax
FLUSH"DATA" flush file called DATA
FLUSH"B:NUMBERS" flush file called NUMBERS on drive B
FLUSH#1 flush file connected to channel #1

Examples
FLUSH"DATA"
OK
10 FILES 2
20 OPEN#2,"DATA"
30 FLUSH#2

Comments
Files must be flushed if they are to be re-used - failure to flush a file
can lead to odd errors in file handling programs. Use with care.
Always use FLUSH"NAME" if possible - using the channel
number method could lead to the loss of a valuable disk.

Associated Keywords
CREATE FILES OPEN CLOSE

31

OPEN OPEN
Function
This command is used to open a data file on a given input channel.
The drive may be specified in the file name as a prefix. Only one
file can be connected to a given channel at anyone time. Error
messages are given if the channel is already in use or if the file is of
the wrong type.

Syntax
OPEN#N,"NAME" n = channel (1 to 8)
OPEN #N, "B :NAME"

Examples
OPEN#5, "TEST" connects a data file called TEST to channel 5

Comments
See chapter on File Handling.

Associated Keywords
CLOSE FILES CREATE FLUSH

CLOSE CLOSE
Function
A file handling command. When files are in use special memory
buffers act as temporary stores. The CLOSE command ensures that
all buffers are correctly written onto the disk.

 A BASIC file handling program must always end with a CLOSE
command. Failure to do this will result in loss of data on the file.

Syntax
CLOSE CLOSEs all OPEN files
CLOSE# CLOSEs only files on channel number 6

Examples
1000 CLOSE: END normal syntax for CLOSEing files
900 CLOSE#6 closes file six for re-use
910 OPEN#6,"FRED"

32

Comments
An error message is given if an attempt is made to CLOSE an
un-open file. An important command in file handling; forgetting
the CLOSE command at the end of a program is a very common
mistake. If you accidentally hit BREAK during keyboard input,
type CONT <ENTER> to put you back into the program. Should
this fail, type CLOSE <ENTER>. This should save your data.
Unclosed files = lost data!

Associated Keywords
CREATE FLUSH FILES OPEN CONT

FILES FILES
Function
Sets aside buffer space in the memory for data files. Each channel
needs a 256 byte buffer in memory.
 The system boots up with 1 file channel buffer as standard, more
are specified using the FILES command.
 A maximum of eight files may be specified. The FILES command
should be used at the very beginning of a file-handling program.
DO NOT USE after files have been OPENed.

Syntax
FILES N N = number of channels required (1-8)

Examples
FILES 6 sets up 6 file channels
FILES 1 resets to 1 file channel

Comments
FILES should be the first command in a program. FILES 1 may be
used to recover buffer space for program use if the file handling is
no longer required.
 Do not specify more files than are needed as this wastes memory.
NEVER expand your FILES in the middle of a program as this will
cause all the variables to CLEAR and CLOSE all files. File buffers
are NOT written to disk after FILES so any information input will
be lost! Program execution will continue (but will have become
very confused!!). Never put the command FILES in a GOSUB

33

routine - remember FILES issues a CLEAR statement so when your
program hits the RETURN it won't know where to go and will give
RETURN without GOSUB error!

Make sure you understand when and how to use this command if
you are putting FILES anywhere other than at the start of a BASIC
program

Associated Keywords
OPEN CLOSE CREATE FLUSH CLEAR

END# END#
Function
Moves the file read/write pointer to the end of a serial file or
random access record. This command is used to extend an existing
file or record. In the case of a serial file the pointer is moved to the
end of the current file.
 Any new data is now written on the end of the existing file. This
obviates the need to read the whole file before adding new data.
 In Random Access mode the command allows individual
records to be extended.

Syntax
END#N (serial) N = channel number
END#N,%R (random) R = record number

Examples
100 OPEN#1,"SDATA" open file
110 END#1 move pointer to end
120 INPUT"NEW DATA";ND$ add new data
130 PRINT#1,ND$ to file

This replaces the usual method:
100 OPEN# 1, "SDATA"
110 IF END(1) THEN 140
120 INPUT#1,A$
130 GOTO 120
140 INPUT"NEW DATA";ND$
150 PRINT#1,ND$

34

These two routines are functionally identical. However the first is
shorter and more convenient.

In random access:

100 OPEN#1,"RDATA"
110 END#1,%50
120 INPUT"NEW DATA";ND$
130 PRINT#1,ND$

Adds new data to record 50 (% record number not required)
Instead of

100 OPEN# 1, "RDATA"
110 IF END(1) THEN 150
120 INPUT#1,%50,A$
130 INPUT#1,B$
140 GOTO 130
150 INPUT"NEW DATA";ND$
160 PRINT#1,ND$

Comments
Allows easy extension of existing data files.

Associated Keywords
RESTORE# DIM # FIND# IF EOF(N) INPUT# PRINT#
FIND#

RESTORE# RESTORE#
Function
RESTORE# moves the read/write pointer to the start of a file or
record. This allows the data to be re-read in the same way that the
normal BASIC RESTORE allows data statements to be re-used.

This is essential if repeated searches of a file are required. In
Random Access the pointer can be moved to the start of a
particular record.

Syntax
RESTORE#N N = Channel number
RESTORE#N,%R R = Record number

35

Examples
100 OPEN#1, "PDATA"
110 IF END(1) THEN 170
120 RESTORE#1: REM RESET FILE
130 INPUT"NAME";M$
140 IF N$ <> M$ THEN 130
150 PRINT N$,T$
160 GOTO 110: REM GET NEXT NAME
170 PRINT"NAME NOT ON FILE"
180 CLOSE:END

Comments
Resets file data as the normal RESTORE resets DATA statements.

Associated Keywords
END# DIM# IF EOF(#) INPUT# PRINT# FIND#

DIM# DIM#
Function
This command is an extension of the normal BASIC DIM
statement. In addition to the normal functions it now allows the
length of a random access file to be set. Only an open file may be
dimensioned. The record length can be from 1 to 255. If longer
records are required they can be used in twos or threes etc. If this
command is not used records default to 128 bytes.

Syntax
DIM#(N,L) N = channel number

 L = record length (1 - 255)

Examples
10 FILES 5
20 OPEN#5, "RANDOM"
30 DIM A (15),#(5,50),B$(10, 15),A$(20)

Comments
By using a suitable DIM#, records can be set up to use the
minimum necessary space on the disk. DIM# will mix quite
happily with other normal DIM statements on the same BASIC
line.

36

Associated Keywords
END# RESTORE# IF EOF(#) INPUT# PRINT# FIND#

IF EOF(N) THEN IF EOF(N) THEN
Function
This is an error trapping command. In the normal course of events
an attempt to read past the end of a file will result in an error
message. When the EOF(N) has been set the error message is
bypassed and the program moves to the line number specified. If
the line number is 0 the error message is reconnected. Each file
channel may have its own trap.

Syntax
IF EOF(N) THEN 100 N = channel number (1 to 8)
IF EOF(N) THEN 0 0 restores error message

Examples
10 FILES 3
100 OPEN#3, "FRED"
110 IF EOF(3) THEN 150
112 IF EOF(2) THEN 500
114 IF EOF(1) THEN 300
120 INPUT#3,A$
130 PRINT A$
140 GOTO 120
150 PRINT"END OF FILE"
160 IF EOF(3) THEN 0 :REM TURN OFF TRAP
170 CLOSE
180 END
300 REM CONTINUE FOR TRAP ON CHANNEL 1
800 REM CONTINUE FOR TRAP ON CHANNEL 2

Comments
IF EOF(n) THEN should be near the start of the program. Up to
eight such commands are allowed, one for each channel. As this
command sets a flag for the error message routine, effectively
telling it which line to go to when it finishes the file, it does NOT
have to be constantly tested by your program, hence the advice to
place it near the start. The best way to think of this command is as

37

'ON EOF(n) THEN GOTO xx' - we couldn't call it this for technical
reasons!

(LINE)INPUT# (LINE)INPUT#
Function
This is used to pass data from a data file to a program in a similar
manner to the normal INPUT routine. The # specifies which
channel to use and the optional % specifies which record. Each
successive INPUT# takes in the next piece of data on the file (c.f.
READ & DATA). LINE INPUT# allows {, and ; to be used as data in
a similar manner to the normal LINE INPUT command. Error
messages are generated if the channel is not open.

Syntax
INPUT#N,A$ or LINEINPUT#N,A$ (serial)
INPUT#N,B (serial)
INPUT# N,A$,B,C (serial)
INPUT#N,%R,A$ or LINEINPUT#N,%R,A$ (random)
INPUT#N,%R,B (random)

Examples
100 OPEN#1, "PDATA": REM SERIAL ACCESS EXAMPLE
110 IF EOF (1) THEN 150: REM GOTO LINE 150 WHEN END

REACHED
120 INPUT#1,N$,P$: REM READS DATA FROM CHANNEL

NUMBER 1
130 PRINT N$,P$
140 GOTO 120
150 CLOSE
160 END

100 OPEN#1 ,"RANDOM" : REM RANDOM ACCESS EXAMPLE
110 INPUT"RECORD NUMBER";R
120 INPUT#1,%R,N$,P$: REM NOTE '%' FOR RANDOM ACCESS
130 PRINT N$,P$
140 GOTO 110

Comments
See section on File Handling

38

Associated Keywords
PRINT# DIM# END# RESTORE#

PRINT# PRINT#
Function
PRINT#puts data onto a data file in the same way that PRINT puts
data onto the screen. PRINT# puts each of the items of data after
the last item. The # specifies the channel number and the option to
give the record number. Error messages are given if the disk or file
are write-protected. A separate PRINT# should be used for each
item of data; USING may optionally be used to format data onto the
file.

Syntax
PRINT#N,A$ (serial access)
PRINT#N, USING" ###. # #' ';C
PRINT#N,%R,D (random access)

 N = channel number
 R = record number

Examples
10 FILES 3
100 OPEN#3,"DATA"
110 ENDS#3
120 INPUT"NAME";N$
130 PRINT#3,N$
140 INPUT"PHONE NUMBER";P$
150 PRINT #3,P$
160 CLOSE#3
170 END

Comments
See File Handling.

Associated Keywords
END# RESTORE# DIM# IF EOF(#) INPUT# FIND#

39

FIND# FIND#
Function
FIND is used to search serial and random access records for a
specified string. In the case of a serial file when the string is found
the next INPUT# will input the target string from its start.
 In the case of a random access file the next INPUT# will input
the start of the RECORD containing the string. A record can have
several entries and the FIND command will locate whole records.
This is very useful when searching random access records (See the
NUMBER demonstration program). When a search is successful
location $03FD is set to $FF (255); if unsuccessful it is set to $0.
 The search starts from the current position of the file pointer.
RESTORE#is used for a complete search of a file. In the FIND
command the asterisk is treated as a wild character e.g: L*ST could
be found as LAST,LEST,LIST,LOST or LUST. You can use as
many asterisks as you like - PR****R MICRO**STEMS is quite
legal and would be found if present on the searched file. However,
* cannot be the first character in a search string, neither will it find
an asterisk within the data file.
 Random Access searches begin at the specified record number.

Syntax
FIND#N,A$ Serial Access syntax
FIND#N,%R,A$ Random Access syntax

 N = channel number
 R = record number
 A$ = search string.

Examples
10 OPEN#1,"DATA"
20 INPUT"STRING TO BE FOUND";C$
30 RESTORE#1
40 FIND#1,C$
50 IF PEEK(&H03FD)=0 THEN PRINT"NOT FOUND":END
60 INPUT#1,A$
70 PRINT A$
80 CLOSE: END

or

10 OPEN#1, "RANDOM"
20 INPUT"TARGET STRING";D$
30 FIND#1 ,%1 ,D$: REM START SEARCH AT RECORD 1

40

40 IF PEEK (&H03FD)=0 THEN PRINT"NOT FOUND":END
60 INPUT #1 ,A$: REM % NOT NEEDED AFTER A SUCCESSFUL

FIND
70 PRINT A$
80 CLOSE:END

Comments
A powerful command, particularly with the inclusion of the wild
character '*'. See File Handling.

Associated Keywords
END# RESTORE# DIM# IF EOF(N) INPUT# PRINT#

BUILD BUILD
Function
This command is used to create an executive file onto disk. The
named file must not already exist. A file is created to hold the text
to be executed. The file may be up to 255 characters in length, but
files can be chained together using DO.
 The prompt 'TYPE 255 CHARS' appears, after which text is
entered as required including all carriage returns etc. The
<BREAK> key is used to exit this mode and write the file to disk.
N.B
 All characters are accepted by this routine including CR, CLEAR,
BACKARROW etc and are counted in the 255 allowed. When the
file is later executed they will have their normal effect.

Syntax
BUILD"NAME"
BUILD"C:NAME" for a multi drive system.

Example
BUILD"EXAMPLE" <ENTER>
TYPE 255 CHARS
LOAD"PROG" <ENTER>
LIST
RUN
<BREAK>

The above example would LOAD a program called PROG, LIST it
then RUN it, all without operator intervention.

41

To activate the program, type:-
DO"EXAMPLE" <ENTER>.

Comments
Saves itself onto disk using your chosen filename and the
extension BLD. Use the DO command to activate a BUILD file. Can
also be tied in with the BOOT command to give long sequences on
initial boot of disk.

Associated Keywords
DO BOOT

DO DO
Function
Executes a file created by BUILD. Enables the contents of the file to
be treated as keyboard input. This command may be used within
BUILD files to execute other BUILD files and thus extend the
command string.

Syntax
DO"NAME"
DO"C:NAME" for a multidrive system

Comments
Used to activate a file composed by the BUILD command.

Associated Keywords
BOOT BUILD

BOOT BOOT
Function
This command allows a disk to automatically carry out a
predetermined instruction when the disk is either booted or
selected. Only one command can be given. However as BOOT can
RUN a selected program or DO an executive file this is no real
restriction. The command BOOT alone cancels the boot format.

42

Syntax
BOOT : RUN"INTRO" RUNs the program named INTRO on boot
BOOT cancels prior boot instruction

Examples
BOOT:RUN"MENU"
BOOT:LOADM"CODE"
BOOT:RUNM"TOOL"

Comments
This command can be used with applications software as the user
does not need to LOAD or RUN a program. An autoboot disk can
run a menu program which can control a suite of routines.
Combined with BUILD/DO, it becomes a very powerful command.
Not intended for a direct PRINT message as BOOT removes
spaces!

Associated Keywords
DO BUILD

Record Specifiers >< ** <>

In Random Access a record is normally addressed by number.
INPUT#2,%N,A$: where N is a numeric variable.
However it is often more convenient to move from record to record
without using a record number. In DELTA this is possible using
the special record specifiers > < and *, which allow the program
to step forwards OR backwards through a file.

* accesses the last record used, i.e if the last record used was 50
 then * will move to record 50.

< accesses the file before the last record used, i.e if the last record
 used was 50 then < will move to record 49.

> accesses the file after the last record used, Le if the last record
 used was 50 then> will move to record 51. This is useful for
 stepping through records.

 These specifiers can he used in any command that uses a record
number. Using '<;', you can even step backwards automatically
through the file without complicated BASIC statements. However,

43

note that FIND will always search forwards from the record set.

Example
INPUT #5,%*,A$
FIND#7,%>,C$

Machine Code Files
An interesting feature of DELTA is its ability to store a specified
area of memory onto disk. This enables the user to store machine
code programs, graphics screens or binary data directly. The
SAVEM command is used to transfer the relevant area of memory
to disk. The instruction takes the form:
SA VEM"NAME" ,START ADDRESS,END ADDRESS.
 where NAME is the chosen file name, START ADDRESS is the
first location of the required memory area and END ADDRESS is
the final location. The system will automatically create a file of
suitable size. The target addresses may be in decimal, hexadecimal
(using the &H prefix) or octal (using the &O prefix).

Example
SAVEM"CODE", 17650,18776
SAVEM"SCREEN" ,&H0400,&H05FF
SAVEM"EIGHT" ,&0777,&02700

 For most applications the hexadecimal value will be the most
useful. In a program the start and end may be specified by
computed (decimal) variables e.g
SAVEM"CODE",A,B*6 etc.

 Example: saving the contents of the text screen to disk. The
screen occupies hex locations $0400 to $05FF. To save the screen
type:-
SAVEM"SCREEN",&H0400,&H05FF

The directory should now show the new file; this file will be shown
as a CMD (command) type. Now enter:
CLS
LOADM"SCREEN"

This will clear the screen and recover the original data. The same
technique is used to save programs written in machine code.

44

 As shown above, machine code files are recovered from the disk
using the LOADM command; this takes the form:
LOADM"NAME" or LOADM"NAME",ADDRESS.
The first command loads the file to the area in the memory from
which it came. Optionally the data may be wanted at some other
location. In this case the address specified is the new start address.

Example
SAVEM"TESTS",&H0400,&H04FF : REM TOP HALF OF TEXT
SCREEN
CLS
LOADM"TESTS" : REM RETURN TO ORIGINAL LOCATION
CLS
LOADM"TESTS",&H0500 : REM RETURN TO BOTTOM HALF OF
TEXT SCREEN

An additional command allows a machine code program to be
loaded and executed. This command assumes that the programs
execution address is the same as its start address. Programs should
be written with this in mind;
The command is:-
RUNM"NAME"

If the execution address is not at the start of the code the following
command can be used:-
LOADM"CODE":EXEC START
where CODE = filename, START = execution address.

Associated Keywords
SAVEM RUNM LOADM EXEC

Drive Selection
In a multi-drive system it is possible to shift between drives
without using the SELECT command. This is done by using a
'Drive Prefix' and a filename. The prefix consists of a drive letter
(A,B,C or D) and a colon.
 This method of selection is usually much more convenient.

Examples
LOAD"B:NAME" will select drive B before loading the program.

45

RUN"D:PHONE" looks on drive D for a program called PHONE
and run it.

DIR B prints directory of drive B.

Note:- That if you SELECT a drive which does not exist, whether via
SELECT or DIR or RUN"C:xxxx", DELTA will remain logged onto
that drive even though the 'Drive Not Ready' or similar error
message will have been generated. To get back to your master
drive, simply type DIR A.

Program Files

A program file is used to store a computer program when not in
use. The size of file required will vary from program to program,
however in DELTA the DOS can create a file of the correct size
using the SAVE command. Programs are recovered from the disk
using either the RUN or LOAD commands.

Loading and Running
In order to get a program from the disk into the computer
workspace, we use the LOAD command.

Example
LOAD"PROGI"
will look for the program named PROGI on the disk and load it into
the workspace. (NB. this will erase any program already resident in
the workspace).
 PROGI may now be RUN, LISTed, or altered. Usually we want to
LOAD and RUN a program; this is done with the BASIC RUN
command.

Example
RUN"PROGI"
will LOAD and RUN the program called PROGI all in one action.
This command can also be used within a BASIC program,
allowing one program to call another. Note the use in the next
example of CHAIN - used to retain program variables:-

1000 INPUT"Type A for Accounts, S for Stock, E for END";Y$
1010 IF Y$ ="A" THEN RUN"ACCT"
1020 IF Y$ ="S" THEN CHAIN"STOCK"

46

1030 IF Y$<>"E" THEN 1000
1040 END
This technique allows a simple 'MENU' program to access a suite
of related programs. Each of the related programs would RUN and
MENU again when they are finished. The advantage of this
approach is that a suite of simple programs can be used for a
particular application. It is always easier to write several simple
programs than one long complex program. DATA is passed
between programs using DATA files.

Example
SAVE"PROG3"
will find a space on the disk large enough for the program, create a
file called PROG3 and then store the program. If there is not
enough space on the disk to store the program an error message
will be generated.
 If an existing program has been corrected or amended, the SAVE
command should be used to store the new version onto the
existing file. NB. This erases the old version.

Storing Programs
The SAVE command is used to store a program which is in the
workspace onto the disk. When a program has just been written, or
a new copy is required on a fresh disk, use SAVE.

Example
SAVE"PROG3"

If you are working with a valuable program, and want to be 100%
sure of not losing both versions due to a silly error, use this slightly
longer sequence using the ASSIGN command.

SAVE"HOLDER"
LOAD"HOLDER" TO CHECK NEW VERSION HAS BEEN SAFELY
STORED.
LIST
KILL"PROG3"
ASSIGN"HOLDER","PROG3" GIVES THE NEW PROGRAM THE
ORIGINAL NAME.

47

Data Files
Data files are the method by which a computer can store
information over a long period of time. This information can be
recalled by either the program that produced the data, or by any
other suitable program. In some applications a single program will
put data onto a file and then recover it at a later date. However, it is
more common for a suite of programs to use a common set of files.
One program would be used to collect and file the data, while other
programs would process and present the data as required.
 In order to make use of files, we need to know how to write data
onto a file, how to locate filed data, and how to read the data from
the file. In many ways the principles are the same as an office filing
system using filing cabinets and ordered files. Each disk is like a
small filing cabinet which can hold a number of files. A particular
disk may only hold one very large file or many small ones. Each
file must be given a unique name when it is created; the computer
does not allow two files on the same disk to have the same name.
These filenames allow the computer to locate the correct block of
information on the disk.
 Before any file can be used for data it must be created. The
creation of a file formats the file correctly for data use and ensures
that no spurious data gets on the files. When a file is created its
length must be specified. This requires a generous over-estimate of
the maximum amount of information to be put on the file. One
domain of the file will hold 256 characters. (The length of Random
Access files will be discusses later).
 Let us create a file called TEST/F, fifty domains long. Type in the
following:-
CREATE”TEST/F”,50
We now have a file ready for a program to use.
 Programs communicate with data files via the input/output
channels. This system allows the program to use up to and
including eight channels simultaneously. The channels are num-
bered from onr to eight. In use each file is allocated a separate
channel by the program. All the channels operate in the same way
and none has any greater significance than the others.
 A file is connected to a particular channel using the OPEN
command.

Example
30 OPEN#3,”TEST/F”

48

This command will then allow the computer to access the file
TEST/F via channel 3.
 Data is sent to the file using the PRINT# command and is
recovered from the file using INPUT# When the file is opened, the
computer always look at the very start of the file, each PRINT#
and INPUT# command works the computer along the file from the
beginning unless otherwise instructed (eg using the END# and
RESTORE# commands).
 When a file is no longer required by a program it MUST be
closed. This is because each channel uses a temporary store called
a disk buffer. The CLOSE instruction makes sure that all this
information is safely stored onto the disk. Channels may be
CLOSEd individually – CLOSE#3 will close channel 3 only.
 Frequently it is necessary to close all open channels at the end of
a program and this can easily be achieved by putting:-
1000 CLOSE
We will now show how to store and recover some simple numbers
and strings. For these programs use a freshly formatted disk

PLEASE DO NOT EXPERIMENT WITH YOUR MASTER DISK!

1. First CREATE a suitable data file called STEP/F, 30 domains
 long

 CREATE”STEP/F”,30

2. We will now put some data onto this file using a simple
 program.
10 REM FILE PRINT PROGRAM NUMBER ONE
20 CLS:OPEN#1,”STEP/F”:REM ASSIGN FILE TO CHANNEL 1
30 A$=”TEST STRING”:REM CREATE A STRING
40 FOR J=1 TO 30
50 B$=A$+STR$(J):REM ADD A FIGURE TO EACH A$
60 PRINT#1,B$:REM PUT THE STRING ONTO THE FILE†

70 PRINT#1,(J*5):REM PUT A NUMBER ONTO THE FILE†

80 PRINT B$,J*5:REM DISPLAY DATA ON SCREEN
90 NEXT J
100 CLOSE
110 END
RUN<ENTER>

† when using data files, use a separate PRINT# command for each item of
data.

49

 We have now put some simple test data onto a file. Always
remember that data is stored on the file in exactly the same order as
it was created by the program, so the recovery program must take
off the data in the same order. Our first program laid down thirty
strings alternated with thirty numbers (i.e. string, number, string,
number ). An equally simple program is used to recover the
data. Our new program must look in the same order as the creating
one.
 RUN the above program, NEW the workspace and enter the
program below.
10 REM FILE INPUT PROGRAM#1
20 OPEN#1,"STEP/F" : REM PUT FILE ON CHANNEL 1
30 FOR J = 1 TO 30
40 INPUT#1,C$,K : REM TAKE DATA FROM FILE
50 PRINTC$,K : REM DISPLAY ON SCREEN
60 NEXT J
70 CLOSE
80 END
RUN <RETURN>
We have now managed to save and recover data from a disk. Try a
few variations on the programs above and see what happens. Try
changing the A$ to be something longer or more useful!
 If you wish to wipe out the data on the file between experiments,
include the following line in the first program
25 FLUSH#1
Now attempt to read more data from the file than was written by
changing line 30 to '1 to 50' and see what happens. Try putting
a very large number of strings on the file, etc, always noting
carefully what happens.
 Before proceeding to the next chapter, try to write your own
programs based on these two simple examples. Remember the
following points

1. Be generous when creating files
2. Data files must be flushed if needed for fresh data
3. Each file must be opened on a separate channel (1-8)
4. Each different item of data needs a separate PRINT# statement-
 it does not matter with INPUT#
5. FILES MUST BE CLOSED. Unclosed file = LOST DATA
6. Take data from the file in the same order that it was put down.
7. On start-up, only ONE file channel is available. Use the FILES
 command if more are needed (up to 8 allowed). The FILES

50

 command should be at the very start of a program, straight after
 your REM statement.
 The following chapters will show how to manipulate and modify
files. Be sure you have understood so far. If not - keep ex-
perimenting. if you are really stuck, phone in to us Monday
evenings 7 - 9pm. during our Customer Service Session.

More on Serial Files
The type of file introduced in the last section is known as a serial
file. In this section we shall see how these files can be manipulated
using the special BASIC file commands which have been incorpo-
rated to make file searching and amendment much easier.
 When a file has been opened, the 'file pointer' always points at
the beginning of the file. If we want to add something onto the end
of the file, this pointer must be moved to the free space at the end of
the file. This could be done by reading the whole file until we reach
the end via the IF EOF(l) THEN statement as follows:-
100 OPEN#1, "STEP/F"'
110 IF EOF (1) THEN 140
120 INPUT #1 ,A$
130 GOT0120
140 REM: REST OF PROGRAM

This method is quite satisfactory, but rather slow and clumsy,
especially if the file is a long one. A neater method is to use the
END command.
100 OPEN# 1, "TEST IF"
110 END#1 : REM MOVES POINTER TO FREE SPACE AT THE
 END.

Note that the relevant channel number must appear after the END#
statement.
 The END# command is obviously neater and much faster in
operation than a searching loop. Note that an error message is
given if the channel is CLOSEd.
 This technique is used to extend a serial file, allowing fresh data
to be added to existing data. The following example shows how
this could be used in a very simple phone number file (remember
to CREATE the file first).
10 REM PHONE NUMBER INPUT PROGRAM
20 OPEN#1,"PHON/F"

51

30 END#1 : REM FIND END OF FILE
40 INPUT"SURNAME"; N$: REM ENTER NAME
50 IF N$="END" THEN 110 : REM CHECK FOR END
60 INPUT"Phone Number";P$: REM ENTER PHONE NUMBER
70 INPUT"O.K.";Y$: IF LEFT$(Y$,1) <>"Y" THEN 40 : REM
 VERIFY INPUT
80 PRINT#1,N$: REM PUT DATA ON FILE
90 PRINT#1,P$: REM PUT DATA ON FILE
100 PRINT:PRINT:GOTO40
110 CLOSE#1 : REM CLOSE FILE
120 END

Every time this program is run it will add new names and numbers
to the end of the file. Try this program and build up a small file of
numbers and names - make some up if you have no friends! We
will use this file in the next few examples.
 Having created a file we want to enter a name and have the
computer find the phone number. In this case we would always
want to start our search at the start of the file, not at some point
elsewhere. We can start the file at the beginning by using the
RESTORE# command. This automatically moves the file pointer to
the beginning of the file. The IF EOF (n) statement is used in the
event of a piece of data not being located. The next example
demonstrates the use of these commands.
10 REM PHONE NUMBER FINDER VERSION ONE
20 OPEN# 1,"PHON/F" : REM OPEN FI LE
30 RESTORE#1 : REM PUT POINTER TO START OF FILE
40 IF EOF(1) THEN 100
50 INPUT"NAME";M$: IFM$= "END" THEN120
60 INPUT#1,N$,P$: REM TAKE NUMBER FROM FILE
70 IF N$<>M$ THEN 60 : REM CHECK FROM MATCH
80 PRINT'THE NUMBER IS";P$
90 PRINT:PRINT:GOTO50
100 PRINT"NAME NOT ON FILE":PRINT
110 GOTO30
120 CLOSE: END

Note:- The IF EOF(l) THEN statement can go anywhere before the
INPUT#l statement. If the IF EOF(l) THEN is omitted, an END OF
FILE error will be generated when the INPUT# reaches the end of
its data. The IF EOF(l) THEN can be turned 'off by using the
command IF EOF(l) THEN 0. This reconnects the END OF FILE
message.

52

 A faster and more flexible search of a serial file can be done
using the FIND routine. This searches a file for a particular string.
If this string is found, the next INPUT#will take the wanted string.
The FIND command sets a flag at memory location $03FD hex. A
'255' signifies a success, 0 signifies failure. The search starts
wherever the file pointer has been left. It is usual to RESTORE# the
file before using a FIND. The next example uses FIND to locate a
phone number.
10 REM PHONE NUMBER FINDER VERSION TWO
20 OPEN#1,"PHON/F" : REM OPEN FILE
30 PRINT:INPUT"NAME";M$: IFM$="END" THEN 110
40 RESTORE#1: REM START FROM BEGINNING
50 FIND#1,M$: REM SEARCH FOR M$ ON CHANNEL 1
60 IF PEEK (&H03FD)=0 THEN 100 : REM CHECK FOR
 SUCCESSFUL SEARCH
70 INPUT#1,N$,P$
80 PRINT"THE NUMBER FOR"N$;" IS ";P$
90 GOTO30
100 PRINT"NAME NOT FOUND": GOTO30
110 CLOSE:END

This version will operate much more quickly on a long file than the
first example. Try extending your original file as much as possible
then search for a number known to be at the end of the file. The
FIND command sets up the INPUT# pointer to the start of the
target string.
 FIND also has another invaluable feature - the wild character *.
This is used when the exact structure of the target string is not
known. An asterisk is used for any unknown character in a search.
The asterisk cannot be the first search character. For example:-
A FIND of L*ST would locate LAST, LEST, LIST, LOST or LUST
on the file J***SON would locate JACKSON or JOHNSON.
 The use of an asterisk as a wild character enables half-forgotten
data to be retrieved with ease END#, RESTORE# and FIND allow
programs to be short and effective. Before proceeding, experiment
with the examples given.
 Serial files are easy to use and make the best use of file space, but
they are difficult to amend because the data is packed up onto the
disk. Removing or adding data in the middle of a file is a problem.
We can overcome this problem by using a temporary holding file
and rewriting the original. The next example will show how we
would delete a name from the file.

53

10 REM FILE DELETION PROGRAM
20 FILES2
30 CREATE"HOLD",30: REM 'HOLD' MUST BE SAME LENGTH AS
 PHON/F
40 OPEN#1,"PHON/F"
50 OPEN#2,"HOLD"
60 INPUT"NAME TO BE REMOVED";M$
65 IF EOF (1) THEN 120
70 INPUT #1 ,N$,P$
80 IFN$ = M$ THEN 110 : REM DO NOT RECORD ONTO HOLDI
NG
 FILE
90 PRINT#2,N$: REM STORE ON HOLDING FILE
100 PRINT#2,P$: REM N.B. SEPARATE PRINT#
110 GOTO70
120 CLOSE
130 KILL"PHON/F"
140 ASSIGN"HOLD","PHON/F";D
150 END

 This program shows the general principle. Expansion of line 80
into more lines would allow amended data etc, to he added to the
holding file.
 Another method of manipulation is to put all the file data into an
array. Modify the array and then put it back onto the file. This is
quicker and more flexible, but if the file is very large there may be
problems with memory size!

5 FILES1
10 REM AMENDMENT BY ARRAY PROGRAM
20 DIMN$(150), P$(150) : REM SET ACCORDING TO SIZE OF
FILE
30 OPEN#1,"PHON/F"
40 IF EOF(1) THEN 90
50 N=0
60 INPUT#1 ,N$,P$
70 N=N+1: N$(N)=N$:P$(N)=P$
80 GOTO 60
90 IF EOF(1) THEN 0 : REM RESTORE END OF FILE MESSAGE
100 RESTORE#1 : REM RESTORE POINTER
110 REM MODIFY ARRAYS
120 I NPUT"NAME" ;M$: IFM$=" END"THEN 180
130 INPUT"NEW NUMBER";P1$
140 FORJ=1 TO N
150 IFN$(J)=M$ THEN P$(J)=P1$: REM ALTER NUMBER

54

160 NEXT J
170 GOT0120 : REM LOOP BACK FOR ANOTHER NAME
180 REM PUT NEW ARRAYS BACK ONTO FILE
190 FLUSH#1 ; REM WIPE ORIGINAL FILE CLEAN
200 FOR J = 1 TO N
210 PRINT#1 ,N$(J)
220 PRINT#1 ,P$(J)
230 NEXT J
240 CLOSE
250 END

This chapter and its examples have shown how to manipulate
serial files. The examples show only a fraction of the potential of
this kind of file. Remember that you can use up to eight files
simultaneously As always, keep experimenting with variations on
the supplied programs. Try and write your own programs and do
not be disheartened when a silly error erases your whole file – it
happens to everyone at times!
 Remember to CLOSE files after use and be careful about the use
of FLUSH which will wipe a file clean beyond recovery. Keep
copies of valuable files, using either COPY or BACKUP.

Random Access Files

As we have seen, serial files arc strings of data in one long
sequence. This is a compact method of data storage, but as already
shown, inconvenient to change or update easily. A more flexible
type of file is the Random Access file. In this sort of file each item or
group of items is stored in separate records. Each record can be
recovered or modified independantly of all the other records.
 The industry standard length of each record is 128 characters,
and the system automatically assumes this record length. However
DELTA allows this to be altered with great simplicity (as wi1l be
explained later).
 Random Access files are created in the same way as a serial file.
Using the standard record length, each disk domain stores 2
records, thus making the calculation of file length easy. Below is an
example file created la hold l00 records.
CREATE" RAND/F",50 50 domains for 100 records
Random Access files are accessed using an extension of the
PRINT# and INPUT# statements.
For example:-

55

PRINT #5, % 15," EXAMPLE"

puts the word 'EXAMPLE' onto channel number 5, record 15.
INPUT #5, % 15,A$

would recover the string from the same channel and record. Note the
punctuation.
 The '%' sign is used to denote the record number in the file. The
next two examples show how to store and recover data from a
Random Access file.

10 REM PRINT TO RANDOM ACCESS FILE
20 OPEN#1, "RAND/F" : REM OPEN FILE
30 FLUSH#1 : REM CLEAR FILE
40 A$="TEST STRING"
50 FORJ=1TO50 : REM PUT 50 ITEMS ON FILE
60 B$=A$ + STR$(J) :PRI NTB$
70 PRINT#1,%J,B$: REM PRINT TO FILE 1 RECORD J
80 NEXT J
90 CLOSE : REM CLOSE FILE
99 END
RUN

10 REM INPUT FROM RANDOM ACCESS FILE
20 OPEN#1,"RAND/F"
30 FOR J=1TO50
40 INPUT#1,%J,K$
50 PRINTK$
60 NEXT J
70 CLOSE
80 END
RUN

 Two things will be evident when these examples have been
tried. Firstly, the BASIC syntax is no longer or more difficult than
the syntax used within the serial files and secondly the program
runs slightly slower than the serial examples: This slower
operation only occurs when reading the entire file; access to
individual records is much quicker. Make the following changes to
the second example

30 INPUT"RECORD NUMBER";J:IFJ<1 OR J>50 THEN 30
60 PRINT:GOTO30

56

 This will allow you to easily pick out a single record.
 Records may contain more than one item of data, as each record
can be used as a separate serial file In this mode, only the first item
of data uses the special % notation. This can be demonstrated by
changing our first example as follows:-
75 PRINT#1,(J*J) : REM NOTE ONLY THE FIRST PRINT# HAS A
 '%'
80 PRINT#1, "EXTRA DATA" : REM STILL USE ONE PRINT#
 PER ITEM

The data can be recovered using these new lines in the second
example:-
55 INPUT#1,A,B$: REM NOTE NO '%' SIGN
56 PRINTA,B$

This method of using the records allows related data to be kept
together.
 The standard record length of 128 characters is a fair comprom-
ise for a variety of needs. Many systems do not provide an easy
method of altering record length for this reason. However, in some
cases 128 characters is very wasteful - why use 128 characters
when the record will never contain more than 50. In other cases,
128 may be restricting and lead to awkward programs. DELTA
allows the record length to be altered using the DIM statement after
the file has been OPENed. The statement takes the form
DIM#(5,60)
where file '5' would be set to a record length at' 60 characters
instead of 128.
 Only an OPEN file may have its length set and different files may
have different record lengths.
 The record length may be between 1 and 255 characters; longer
records are produced by using records in twos or threes etc.

For example:-

100 DIM#(1,250)
110 FOR J=1TO100 STEP2
120 PRINT#1,%J,A$
130 PRINT,B$
.
.
.
200 NEXT J

57

This type of routine would give an effective record length of 500 (2
x 250). When using variable length records, do not set the record
any larger than actually necessary. A good tip is to store the actual
record length on record zero, as follows:-

10 FILES5 : OPEN#5,"RAND/F"
20 INPUT"RECORD LENGTH";R
30 DIM#(5,R)
40 PRINT#S,%0,R
etc

When reading a Random Access file, the DIM MUST be the same
value as when the file was written. Otherwise the data will not be
found except on record zero. Using our record zero trick, we start
our recovery program:-

10 FILES 3 : OPEN#3,"RAND/F"
20 INPUT#3,%0,R
30 DIM#(3,R)
etc

As a good general principle, use record zero in this way and start
storing data from record 1.
 Updating a Random Access file is very easy; simply write the
record again. However, if each record has more than one item the
whole record must be rewritten. It is good practice to erase the old
record with nulls before reuse. The following routine shows how
this can be done.

1000 NC$=STRING$(L-l,O) : REM L = record length
1010 PRINT#N,%R,NC$: REM N = channel number, R = Record

number
1020 RETURN

 Random Access files are much easier to use when information is
frequently revised or amended. However, remember that a Ran-
dom Access file uses much more disk space and is slower if the
entire file has to be read at one time.
 The main difficulty with Random Access files is remembering on
which record a particular item of data was stored. DELTA
overcomes this difficulty using a highly advanced indexed file
system.

58

Indexed Random Access Files
The indexed Random Access file overcomes the problem of
locating data in a very large Random Access file. The system
involves a small serial file which acts as an index for one or more
Random Access files. A simple example would be customer files in
a business. The index file would hold only the customer's name
and record number. The record on the Random Access file would
hold all the details on the customer. The secret of this type of file is
to put as little as possible on the index.
 This technique combines the advantages of both types of file; the
index file may be searched using the FIND command and the
record can be updated with ease.
 The following examples show how an address file could be
maintained using this approach. We will need two files.

CREATE"ADDR/F",60 : REM RANDOM FILE
CREATE"INDX/F",10 : REM INDEX FILE
5 FILES 2
10 REM INDEX EXAMPLE PROGRAM ONE
20 OPEN#l,"ADDR/F"
30 OPEN#2,"INDX/F"
40 N= 1: REM READ THROUGH INDEX AND FIND TOTAL No

RECORDS
50 IF EOF(2) THEN 80 : REM BYPASS END OF FILE MESSAGE
60 INPUT#2,N$,M : REM INPUT NAME AND RECORD No
70 N=N+l :GOTO60: REM N=No OF RECORDS PLUS ONE
80 IF EOF(2) THEN 0 : REM TURN END OF FILE MESSAGE
85 RESTORE#2:END#2
90 DIM#(1,60) : REM SET RECORD LENGTH
100 PRINT#1,%0,60: REM STORE RECORD LENGTH
110 PRINT:INPUT"SURNAME AND INITIALS";N$
120 IF N$="END" THEN 260
130 INPUT"NUMBER AND ROAD";R$
140 INPUT"TOWN";T$
150 INPUT"COUNTY AND POSTCODE";C$
160 INPUT"PHONE NUMBER";P$
170 INPUT"ALL CORRECT';Y$:IFLEFT$(Y$,l)<>"Y"THEN

110 : REM VERIFY DATA
180 REM PUT DATA ONTO FILES
190 A$=N$+R$+ T$+C$+P$:IFLEN(A$)<S5 THEN210 : REM

CHECK LENGTH OF DATA

59

200 PRINT"TOO LONG":GOTO110
210 PRINT#2,N$:PRINT#2,N: REM NAME AND RECORD ONTO

INDEX FILE
220 PRINT#l,%N,N$: REM NAME ONTO RECORD N
230 PRINT # 1, R$: PRI NT # 1, T$:PRINT # 1 ,C$: REM ADDRESS

ONTO RECORD N
240 PRINT#l,P$: REM PHONE NUMBER ONTO RECORD N
250 GOTO110
260 CLOSE
270 END

 This program will also add new names onto the end of existing
files. If you want to use this program for a large number of names
and addresses, create larger files before you start. The second
example shows one method of locating the data.
10 REM ADDRESS FINDER PROGRAM
20 FI LES 2 :OPEN # 1," ADDR/F" :REM OPEN FI LE
30 OPEN#2,"INDX/F"
40 INPUT#l, %0,R
50 DIM#(l,R): REM SET RECORD LENGTH
60 PRINT:INPUT" NAM E" ;M$: I FM$=" END"THEN 180
70 RESTORE#2: REM RESET INDEX FILE
80 FIND#2,M$: REM FIND NAME ON ON INDEX
90 IF PEEK(&H03FD)=0 THEN PRINT"NAME NOT

FOUND" :GOTO60
100 INPUT#2,L$, R: REM GET RECORD NUMBER
110 REM RECOVER RECORD
120 INPUT # 1, % R,N$, R$,T$,C$,P$
130 PRINT: PRINTN$:PRINTR$: PRI NTT$:PRINTC$
140 PRINT:PRINTP$
150 FIND#2,M$: REM CHECK IF NAME OCCURS AGAIN
160 IF PEEK(&H03FD) <>0 THEN 100
170 PRINT:PRINT:GOTO60
180 CLOSE
190 END

These programs can be easily modified to take in alternative or
additional data. Even in this simple form, it demonstrates the
power of the system of filing. In a more complex form, the index
file might also contain the name of the Random Access file,
allowing the index to call in fresh files. For example:-
300 INPUT#l,N$,F$,R: REM NAME, FILE AND RECORD
310 CLOSE#l: REM CLOSE EXISTING FILE

60

320 OPEN#2,F$: REM OPEN NEW FILE

 The second program can be modified so that instead of printing
the address, it inputs an amended address. To do this, delete lines
110-160 and insert an input routine as shown in the first program.
 Another requirement of this technique is to create more than one
 index file. In our example, we indexed by name; however, we
could simultaneously index {on separate files} by town or phone
number. In a library program, one might index by author,
publisher or title. When creating files, always give some thought to
how the data is to be used. In a multi-disk system, keep the control
program and index(s) on the main drive (A) and the large Random
Access files on a separate drive. Always keep each index file down
to a minimum of information. This will allow the searches to be as
fast as possible. The index files are amended using the methods
discussed and demonstrated in the chapter on serial files.
 We have now examined the methods by which data files can be
used within programs to store and retrieve data. As a general rule it
is easier to use a suite of programs sharing files than to use a
complicated general purpose program. Each small program is
easier to write, takes up much less memory and loading is quicker.
When writing data handling programs test them extensively with
dummy data before putting valuable data onto disk.

ALWAYS MAKE COPIES OF VALUABLE DISKS.

Data can be lost very easily by silly programming errors (like not
CLOSEing a file). Do practice writing file-handling programs as
once the techniques are mastered, it is a fast and reliable way of
storing a large amount of data. You may use up to eight files at a
time. If this is not enough, some files should be temporarily
CLOSEd and others OPENed when they are needed.
 When writing data onto existing files, make sure you have
moved to the free space at the end of the file (use END). In the case
of a Random Access file, make sure that the record is empty. The
next example shows a method of finding the first empty record on a
Random Access file. This will work on any Random Access file
regardless of its contents.
190 OPEN#l, "ADDR/F"
200 IF EOF (1) THEN 250
210 N= 1
220 INPUT#5,%0,R : DIMFunction(5,R) : REM SET RECORD

LENGTH (OPTIONAL)

61

230 INPUT #5, %N,A$
240 N=N+1 :GOTO230
250 REM N NOW CONTAINS FIRST EMPTY RECORD No.
260 IF EOF (1) THEN 0

 Another dodge is to record the highest used record number
along with the record size onto record zero.

2010 PRINT#5,%0,R:PRINT#5,H : REM R=RECORD SIZE,
H= HIGHEST RECORD IN USE

and to recover

90 INPUT#5,%0,R,H
100 DIM#(5,R): N=H+l: REM N= FIRST FREE RECORD

Transfer of Programs from Tape to Disk

Once your DELTA system is up and running, you will undoubted-
ly want to transfer your cassette programs to disk. If they are in
BASIC, simply follow the steps below.
 1. Ensure that the DELTA system is plugged in and running.
 2. Type CLOAD "filename" where 'filename' is the name of the
 program, then hit ENTER.
 3. Press PLAY on your cassette recorder and the program will
 load.
 4. Once the program has loaded, save the program to disk using
 the syntax SAVE "filename" where 'filename' is your chosen
 name for the program.
 5. Type RUN "filename" and the program will load from disk
 and autorun.
The above procedure will work as long as there are no machine
code inserts in the program. If the program uses machine code
routines (look for EXEC in the program), it may not be possible to
run them from disk without a lot of program conversion. Here's
how to find whether a BASIC/machine code program will work
correctly:-
 5. Follow steps 1 to 4 above.
 6. Type LOAD "filename" to load the program from disk. DO
 NOT RUN IT YET.
 7. Open the disk drive door and remove the diskette.
 8. Now RUN the program. Pay particular attention to the disk

62

 drive - if the red disk access light comes on during the
 program, the machine code part of the loaded program
 has overwritten the part needed by DELTA. Switch off your
 DRAGON and only use the program from tape!
 9. If the program stops unexpectedly, DELTA has won the fight
 and you can only use the program with the DELTA card
 disconnected!
 10. If the program runs all the way through with no unexpected
 occurrences AND you are able to use DELTA normally
 afterwards it is safe to assume that all is O.K. and that you can
 treat the program as a normal BASIC program.

Transferring Machine Code Programs

Transfer of machine code programs from tape to disk is not
possible unless you have or can obtain the following information
for the program concerned:-
(a) Area of memory where the program is located.
(b) Entry address of program.
 The above information is required by the SAVEM command
when saving the code to disk - without it saving is not possible. It
is worth looking closely at the documentation supplied with the
software to see if the information is given.
 Assuming that you have the information required, save the code
to disk using the syntax normally used by the SAVEM command -
see relevant section. Retrieve the program with RUNM.

Transferring Cartridges to Disk

The games cartridges and the DELTA disk system use the same
memory locations so it is not possible to transfer a cartridge to disk
- loading would in any case be no faster! If you are moving from a
disk program to a games cartridge, take out the diskette(s) and
TURN OFF THE DRAGON before unplugging DELTA. Plug in the
games cartridge before powering on. Failure to do this could result
in a dead DRAGON/DELTA/GAMES CARTRIDGE - all three if
you are really careless!

63

DELTA - Quick Syntax Reference
WORD SYNTAX
LOAD LOAD"filename"
SAVE SAVE"filename"
RUN RUN"filename"

RUN"filename" line number (from keyboard only)
CHAIN CHAIN"filename"
APPEND APPEND"filename"
LOADM LOADM"filename"

LOADM"filename", address
SAVEM SAVEM"filename", start address, end address
RUNM RUNM"filename"

RUNM"filename", load address
DIR DIR

DIR drive
INIT INIT
CONFIG CONFIG, drive, tracks, sectors/track, sides,

step rate, data rate
KILL KILL"filename"
ASSIGN ASSIGN"filename", "newfile"

ASSIGN"filename",S
ASSIGN"filename",D

VERIFY VERIFY D (disable)
VERIFY E (enable)

SELECT SELECT drive
COPY COPY"A:SOURCE", "B:TARGET"
BACKUP BACKUP
CREATE CREATE"filename", sectors
FLUSH FLUSH"filename"

FLUSH#channel number
OPEN OPEN#channel, "filename"
CLOSE CLOSE

CLOSE#channel
FILES FILESnumber of channels
PRINT# PRINT#channel, variable (serial access)

PRINT#channel, %record number, variable (random
access)

INPUT# INPUT#channel, variable (serial)
INPUT#channel, %record number, variable (random)

FIND FIND#channel, search string (serial)
FIND#channel, %record number, search string
(random)

64

END# END#channel (serial)
END#channel, %record number (random)

RESTORE# RESTORE#channel (serial)
RESTORE#channel, %record number (random)

DIM# DIM#(channel number, record length)
IF EOF# IF EOF#(channel) THEN line number
DO DO"filename"
BUILD BUILD"filename"
BOOT BOOT: RUN"filename"

Error Messages

NOT READY Drive door open or a non-existent drive
has been addressed

SEEK Required track or record cannot be
found

RE-READ Unable to re-read a sector after it has
been written - disabled by VERIFY D

CRC Checksum error on data or record
header

READ ONLY Disk is write protected!
TRACK NUMBER Attempt made to access invalid track

number. Indicative of a corrupted
scratch area. Be careful with your
PEEKs/POKEs

DRIVE SPEC Attempt to access invalid drive (A-D)
Data lost during a disk read/write data
transfer

NOT FOUND Filename requested not in directory
SYNTAX Invalid DELTA command syntax
FILE PROTECTED Attempt to delete or write to a protected

file
NO SPACE Insufficient space to save program to

that disk OR to load a program into
memory from disk

DIRECTORY FULL No room left in disk directory for further
entries

FILE TYPE Incorrect file-handling command used.
E.g. OPENing a BAS type file in error.

DISK TYPE Attempt made to access a non DELTA
disk

65

EOF Attempt made to read or write past the
end of file

CHANNEL CLOSED Attempt to CLOSE an already CLOSED
channel

CHANNEL Invalid channel number specified
RECORD Invalid record number specified
CHANNEL OPEN Attempt to OPEN an already OPEN file
WORKSPACE EMPTY Attempt made to save a null program -

minimum size is 13 bytes
NAME EXISTS Attempt to create or assign existing

filename
OPERATION ABORTED BACKUP, COPY, or INIT has been

aborted
PARAMETER Out of range parameter used
ILLEGAL ACCESS Attempt made to access a protected disk

Delta Memory Map

Below is a list of locations used by DELTA. This map will be of
particular interest to users of 6809 code. It also gives information
about areas of memory to avoid when writing your own 6809
routines with DELTA present. All addresses given are in hexade-
cimal.

0000 - 78FF Some locations in page three used for system
constants
BASIC workspace and scratchpad area
File Buffer#2 and other buffers - these are
defined from the current top of memory when
FILES is used
User available area as required

7900 – 79FF FILE buffer #1
7A00 – 7AFF Disk Direct page and system variables/

constants
7B00 – 7BFF Directory Buffer
7C00 – 7EFF Directory bitmap and disk control blocks
7F00 – 7FFF File control blocks and scratchpad
8000 – BFFF Extended Colour BASIC-in-ROM
C000 – DFFF DELTA DISK SYSTEM ROM

66

E000 – FEFF ENCODER 09 (Optional extra)
FF00 – FFFF Input/Output devices

Filenames

DELTA filenames maybe up to eight characters in length and there
are few restrictions as to the characters which may be used to make
up the name. Alphabetic, numeric and even punctuation can be
used within a filename. The first character of the filename does
NOT have to be alphabetic as with most other systems.
 However, it would be unwise to use a filename such as
'(&$!?/<%' as remembering it would be quite a feat of memory! In
general, use file names which are relevant to the program in
question. The use of a numeral as the last one or two characters
will enable you to SAVE different generations of your program as
you go along and be able to refer back to an earlier version if
necessary.
 We STRONGLY recommend that you put your chosen filename
in a REM statement at the beginning of each program. You can
then LIST it and always be sure of using the correct title. The most
popular way of losing a program is to save another program that
you are working on onto the LAST program filename you used,
thus over-writing the last program and destroying it - this is
extremely easy to do when you are tired and it's late at night/early
in the morning!
 To get round the above problem completely, use the following
sequence at the start of every program.
1 REM NAME OF PROGRAM IS 'SAFETY6'
2 REM WRITTEN BY A CUSTOMER
3 GOTO 10 : REM SKIP NEXT LINE
5 SAVE"SAFETY6" : END: REM SAVE IT THEN STOP
etc.
 In normal circumstances, your program would start at line 1,
pass line two to line three, and then jump to line 10, hut if you wish
to SAVE a program to disk, simply type RUN 5 <ENTER> and line
5 will save the program to disk then stop. If you always want the
program to RUN after saving, simply leave out the END.
 If you get into the habit of typing RUN 5 every hour you will
rarely lose a program and NEVER lose more than an hours' work.

67

File Planning Summary

1. Decide how much file space you are likely to need (1 domain =
256 bytes). Be generous - diskettes arc quite cheap! Having
decided a size, use CREATE to make up the file on disk. DON'T
put CREATE in the program which is going to save and retrieve
data as it will wipe it!

2. Decide whether to use random or sequential files - read through
the chapter on each to decide which is best for your purpose.

3. Decide how many channels will be needed and use FILES to
create them - put this in the program right at the beginning.

4. OPEN the file and channel you are going to use.
5. Use either PRINT# or INPUT# to retrieve or store data.
6. CLOSE the channel(s) after use.

DELTA Disk Cartridge - pin connections

1 - 33 odd numbers =0v To Drive
2 HLD Head Load From Drive
4 WRFLT Write Fault To Drive
6 SELD Select D From Drive
8 INDEX INDEX To Drive

10 SELA Select A To Drive
12 SELB Select B To Drive
14 SELC Select C To Drive
16 MOTORON Motor On To Drive
18 DIR Direction To Drive
20 STEP Step To Drive
22 WRDATA Write Data To Drive
24 WRGATE Write Gate To Drive
26 TRKOO Track 0 From Drive
28 WRPROT Write Protect From Drive
30 DATAMXD Mixed Data From Drive
32 SDSEL Side Select To Drive
34 TG43 Track >43 To Drive

All interface signals are active low and are buffered/terminated in
the DELTA controller.

Write Fault is not used by DELTA.

68

The Switchable Drives

One of the more popular types of drive now appearing on the
market is the switchable drive. This is normally an 80 track drive
with modifications done to the stepper motor circuit. These have
appeared in all drive sorts and sizes, There are full height drives, ⅔
height drives and half height drives.

The Odd One Out
The ⅔ height drive is an oddity in that the natural progression of
drives has been from full height to half height. As in most modern
computer applications things are normally done in the ratio or
base of two. That is to say double the memory size, double the disk
capacity and so on. Therefore it is only natural that if something for
the computer is to be reduced in size then ½ would seem like the
correct sum. Somehow the ⅔ height crept in somewhere along the
line and is an oddity.
 It is unfortunate that the above sum cannot be applied to the
price of the drive.

Switching Down
The main purpose of the switchable drive is to enable the user of
an 80 track system to READ software or diskettes that have been
recorded on a 40 track drive. It is NOT recommended that you use
the switchable drive to write or make a 40 track diskette for use in a
standard 40 track drive.

Track Width
The earlier section on floppy drives gave the different track pitches
for both 40 and 80 track drives. From this it is found that the 80
track drive lays down its tracks over the same area as the 40 track
drive. Therefore the 80 track drive has a track thickness of exactly
half that of the 40 track drive and a correspondingly smaller gap in
the Record - Playback head. It is because of the different track
widths that the 80 track drive can get inside the track bands of the
larger 40 track drive. The reverse is however not true. If you use
one of the switchable drives to make a 40 track diskette you will be
making it with narrow track widths and the 40 supposed to read
but also the intertrack guard band plus part of the next narrow
track. See Figure 5 for a diagram of these effects.

69

Figure 5. Here it Call be seen tat the 80 track drive can read inside the 40 track
width, but the 40 track read will overlap into the adjacent tracks of the
80 track drive.

Possibilities
If you have no options but to attempt to make a 40 track diskette on
a switchable drive then you are more likely to have success if the
diskette to be used is first Bulk Erased with a proper magnetic
erasure. The other alternative is to use brand new diskettes that
have not yet been used or formatted.

Precautions
When using the drives in the 40 track mode be very careful not to
run programs that will take the head beyond the natural end track
of the diskette. This can be done for example by running the 80
track formatter whilst in the 40 track mode. Extreme damage can
be caused to head carriage assembly if this is allowed to happen.
At a minimum it is possible to force the drive alignment beyond
the specification and the only recourse will be to return the drive
for service.

Maintenance
When used correctly then all quality drives will give years of
reliable service. This is also true of the switchable drive. There is
only minimum maintenance required and that is to keep them
clean and after any heavy period of use run a head cleaner diskette.
The head cleaning kits available should only be used 'when you
feel it is absolutely necessary to do so. Make sure that the diskette
is well drenched in cleaning fluid before inserting it into the drive.

70

DO NOT leave the cleaning diskette rotating in the drive for longer
than 15 seconds. That is all the time needed to clean the head(s).
Any periods of greater than 15 seconds can result in the diskette
drying out sufficiently to become abrasive to the delicate head(s) of
the drive. Keep head cleaning to a minimum and certainly not
more then once in three months.

Keep Out Rubbish
Always take time to examine your diskettes at regular intervals.
Inspection of this kind can often find a potential candidate for the
scrap bin before it shows up and destroys some valuable software.
In particular look for scored rings or pits on the diskette. Always
examine diskettes that have been given to you by another party,
before committing them to your drives. Try not to use the drives in
a dirty or dusty atmosphere. When possible DO NOT use
unbranded diskettes or those of unknown origin. By using
branded diskettes you can be sure that the manufacturer has had
the confidence to put their own name on the diskette box and label.
Simple precautions like this can lead to years of untroubled service
from your drives.

Half Height Drives

During the early sections of this book we covered the correct
setting up of the DIP or Drive select switches of a typical TEAC
Floppy Disk Drive.
 With the appearance of the new half height drives it was felt that
a new chapter on the setting of some of these drives would be a
helpful bonus to those of you who had purchased any of the new
type drives. In particular, I will cover the correct setting for the
following half height drives. TEAC, TEC and MlTSUBISHI.
 The drives offered by these companies vary from the standard 40
track single sided drive to the 80 track Double sided drive. In the
case of the Mitsubishi drive, it is an 80 Track Double Sided drive.
 This is currently the only type of drive made by MITSUBISHI.
They do not currently make any other type of drive.

71

Head Loading
As with the TEAC drives they employ a head load solenoid. This
means that it requires either a Motor On or a valid Drive select
signal before the head can be loaded against the media for
communication with the diskette. This is the purpose of the two
switch or link options found on most drives, HM or HS. These
stand for Head to Motor and Head to Drive Select respectively.
That is to say in the first instance, with the link set to HM, the head
of the disk drive will be loaded against the diskette media any time
the motor is started up. It may well be that the computer wishes to
access another drive, but as all the Motor On lines are usually
connected together on the SA400 system, the motors of all the
drives on line will be activated. Thus any drive that has the HM
option set will load the head of that drive against the media. When
the computer comes to use that drive, then the drive will already be
in a condition to pass information to and from the diskette.

Head To Select
With the switch or link set in the HS position then the loading of
the head against the media will only take place when that
particular drive is actually selected for communication between its
diskette media and the computer. That is to say that with the HS
option selected and a drive set to be drive one or DS1 of the system,
then only when drive one is selected will the head of the drive
actually be loaded ready for use.

For and Against
There are arguments for and against both methods of head
selection. With the HM option there is more wear on the diskette
due to the head always being loaded when any drive on the system
is selected or used. Any disk drive "LOAD" or "SAVE" command
will load all the heads of all the drives on the system whether they
will be used or not. Any drive access however small will result in
all the heads of all the drives being loaded against the media.
 With the head select in the HS position the head of a particular
drive will only be loaded when the drive itself is selected for use.
That is to say that if drive zero or DS0 was being used, then the
head of drive one or DS1 will not be loaded against the media.
With the HS option it can be seen that the drive head is only loaded
when it is actually required to communicate between the computer
and the diskette of that drive.

72

Settling Time
The arguments go like this. If you have the HM option selected
then the drives will not require a Head Settling time before the
drive is Ready for use. It speeds up drive to drive access time for
certain and is quieter during drive to drive transfers. It also means
that the diskettes are subjected to greater wear due to the longer
time that they are left in contact with the drive head.
 In the case of the HS option then diskette wear is reduced to a
minimum as the head is only loaded against the media when an
access is required to THAT particular DRIVE. This results in a lot
of clicking taking place during drive to drive transfers, as the heads
are selected only when they are needed. It also means that when
the drive is selected then a small amount of time must be allowed
for the head to settle against the diskette before access is attempted
to the diskette. This is what is known as Head Settling time and can
be as much as 50 m/s in the older type of drive. .

Self Loading
It may be that you have come across a drive that contains neither
the HS or HM links or switches. If this is the case then your drive is
most likely to be the type whereby the head is loaded against the
diskette every time the drive door is closed. This means that the
head of the drive is in contact with the diskette at all times. Even
when the drive is stationary. This results in an even higher degree
of diskette wear than a drive with the HM option set. There is also
the likelihood of the diskette being corrupted if the power is
removed from the drive whilst the diskette is still inside it. It is one
of the penalties to consider when purchasing a drive for any
computer. Having said that, it is always recommended that
diskettes should NOT be left in any drive when it is not in use. The
safest place for a diskette is in the protective sleeve it was supplied
in. It is also good practice to only insert the diskette after all the
system is turned on and remove the diskette first before any of the
system is turned OFF.

MuItiplexing
Another connection that can be found on Floppy Drives is the MX
link or switch. This is the one that causes most trouble and
confusion. Its purpose is to allow two or more drives to be
connected together on the same cable. Incorrect setting of this

73

connection can have the most surprising results. It can even cause
you to think that there is a fault with another drive on the system.

The Right Way
This drive is unusual in that most drives have this switch working
in the opposite sense. That is to say the MX is normally OFF or
unmade for multiplexing two or more drives. TEAC have now
corrected this anomaly and all the current half height drives will
require this link to be unmade for correct operation. It has also
been found that this link can be (and normally is) left unmade,
even on a single drive system.

Drive Select
With the new type of drives, the drive selection remains the same
as with the previous full height drives. If you wish the drive to be
the BOOT drive or ZERO drive then you will make the link DS0. If
you wish the drive to be drive one then you will make the
connection DS1 , Only one of the Drive Select (DSx where x = a
value 0 to 3) switches should be made for any drive. No two drives
on the same system should have the same Drive Select switches
made. When using Double Sided drives with the DELTA Disk
System the other side of the diskette is automatically taken care of
in the DELTA operating system under the command "CONFIG".

Another Terminator
ALL floppy drives need to have the drive cable terminated with a
resistor. Only one resistor should be on the entire system. Normally
it is left in the last drive on the cable. These resistors are now
appearing in different colours and forms. In most drives they can
be identified easily by looking for what looks like an unusually
shaped DIL package that is located in a socket. The unwanted
terminators can then be unplugged or removed.

Fixed Terminators
With the MITSUBISHI drives a different system is used whereby
the terminator is fixed within the P.C.B.. of the drive. With this type
of terminator it is necessary to remove a number of links that
connect the terminator into circuit. Figure 6 shows a typical link

74

setting for the MITSUBISHI drive. It can be seen that the drive is
set to be the BOOT drive or DS0 with the HS option for the head to
load only when access is required to that drive. No MX link is
made. Whether the drive he used on its on or with another on the
same system, this link will be left unmade.

Different Links
Just below these links and to the left is the fixed resistor pack that is
the terminator. As it is soldered into the P.C.B., the row of links just
below it are all removed to take it out of circuit when required. No
other links should be adjusted or tampered with as damage to the
drive can result.
 Figure 7 shows the correct setting for a TEAC slimline drive.
Note the different locations of the links and indeed the different
order that they are laid out. The drive is again set to be a BOOT
drive or DS0. The white "BECKMAN" resistor pack can be clearly
seen. It is this pack which serves as the terminator and is simply
unplugged on drives that do not require their use.

Figure 6. Typical link setting for the Mitsubishi drive.

75

Rounding Off
In the final example Figure 8 there is nothing wrong with the
link settings. Only one link is required for this version or a TEC
drive. It does not have a head load solenoid and therefore does
not have the usual HM or HS links. The MX link does not require
making on this drive therefore only one link is used and that is the
one to select the drive. Again the drive is shown as DSO. The
terminator or resistor pack is the rather odd looking device spaced
to the left of the link bank. It is mounted in a DIL socket and can be
removed if not required.

Final Comments
If you are unsure of what to do then always get expert advice. Most
manufacturers including CUMANA supply the drives already
addressed and with the correct resistor terminator. There is
normally no need to open the unit or make any adjustments unless
you wish to add other drives to the system, Before making

Figure 7. Correct selling for a TEAC slimline drive.

76

telephone calls for technical advice please read all the literature
supplied with your drives, as most answers can be found there.

Figure 8. Linking the TEC drive.

Points to Note

Floppy disk storage is very reliable. However, the following points
should be noted, especially if this is your first disk system.
1. NEVER switch a disk drive or your DRAGON on or off with a
 disk inside it - disk corruption is highly likely if you do so.
2. Switch on all your mains powered peripherals (printer etc)
 before inserting a disk - NEVER turn on a peripheral while a
 disk is being accessed - open the drive door first.
3. Leave the drive door open when the system is not in use.
4. Disks should be inserted into the drive with the label towards
 the user and facing the closing trap door - i.e. with the oblong
 slot facing away from you as you gently push the disk into the
 drive. See Figure 9.

77

Care of Diskettes

Floppy diskettes are delicate! Never bend, twist or crease them or
subject them to extremes of heat, cold or humidity. Keep them
away from food, dust, magnets and smokers!
1. Don't touch the brown recording material held inside the floppy
 envelope. Grease from fingers can contaminate the head and
 make the disk impossible to read.
2. When writing on the disk label use light pressure with a
 felt-tipped pen, NEVER a ball-point or pencil. Wherever
 possible, write on the label before attaching it to the disk. Place
 the label in the top right-hand corner of the disk, taking care not
 to block the write-protect slot (see below). Never stick a label
 over any of the circular or oblong holes in the disk.
3. Keep all disks in their envelopes when not in use. Avoid leaving
 them flat on tables. If you have a disk box (supplied free with all
 10 off Premier disks), get into the habit of putting the disks
 straight back in the box after use. It only needs someone to
 place a cup of coffee on one.
4. Keep young children (and ignorant adults!) away from your
 disks.

Figure 9. Insertion of the disk.

78

5. Always make a backup of precious programs on a different
 disk!
6. Don't leave your disks on top of equipment, especially
 televisions/VDU's - danger of magnetic contamination.

Write Protection
A disk may be write-protected to prevent any further information
being written to it, thus preserving its contents. Part way down one
side of the disk is a small square slot. Covering this slot
write-protects the disk. Each box of PREMIER disks contains a
supply of small white labels for this purpose. They may be
carefully peeled off and used again.

Problems - Observations - Help

Problems
If your DELTA system either does not work or works erratically,
firstly check all the connections between the DRAGON and the
disk drive. Clean the connectors with WD40 or similar aerosol.
Check the plugs to make sure you have not inserted incorrectly at
some time in the past and bent a contact - spare cables are
available from PREMIER and are listed in the price list.
 Ensure that all the connectors are pushed gently but fully home.
In most instances this will cure your problems.
 Have you SELECTed or DIRed a drive not connected to your
system? If so type DIR A to return control to your master disk.
 If you constantly get read errors from the disk, have you
CONFIGed it properly? If you bought a complete system from
PREMIER this will not be the problem but if you supplied your
own drive you may be attempting to run it too quickly - the drives
we supply have a very fast access time. Use CONFIG to alter the
step rate to option 3.
 Is the diskette you are using faulty? Try another one and see if
that stops the errors. Examine the diskette closely for
contamination/scoring of the media.
 Have you removed the DELTA cartridge with the DRAGON still
switched on? If you have. you've probably killed it. Return it to
your dealer but note this fault is NOT covered by the warranty.

79

 If you are unable, after the above checks, to get the system
working, contact your dealer for advice or use our free phone
service (see below), Please note however that it is very hard to give
an accurate diagnosis over the phone! Don't forget first though – if
all else fails read the manual!
 N.B. DELTA will not read disks created on or for other computer
systems such as BBC, PET, etc. Neither will it read disks created by
or for the Tandy Colour Computer.

Observations
If you have any ideas of improvements for the DELTA system or
the supplied documentation, please write and let us know.
PREMIER always welcome customer feedback - it helps us to
produce better products! Address such correspondence to John
Hooker.

Help Customer Phone Service
If you are unable to get DELTA to do something you think it ought to
do, PREMIER have a Customer Phone-in Service to help you. It
operates from 7-9 p.m. on MONDAY EVENINGS (only) on
01-659-7131. Our engineers are on hand to help you. The service is
very popular so please keep trying if the line is engaged.

DELTA Disk Operating System was written by Justin Johnson and
Peter Rihan. No part of the program may be stored or copied or
reproduced by any means whatsoever other than for the personal
use of the original retail purchaser without the written consent of
PREMIER MICROSYSTEMS LTD.

80

Original scans provided by Lord_British

OCR & Formatting by Robcfg

